Blockchain Architecture Simplified: How It Works Edureka

libbitcoin: Asynchronous C++ Bitcoin library, full node and querying server

libbitcoin is a community of developers building the open source library, tools and implementation necesary for a free, independent and vibrant Bitcoin. In this way we are helping to build a better future. libbitcoin believes in the revoltionary promise of Satoshi's original protocol. The libbitcoin development project aims to create an extendable, scalable and configurable architecture, along with useful software. Making Bitcoin super-pluggable, highly configurable and easy to interact with.
[link]

GAIAcoin

GAIA coin is an alternative cryptocurrency based on Bitcoin. GAIA coin offers the security and reliability of the blockchain with an Extensible, Skinnable, Modular platform design. Wallet users can buy and sell items inside the built-in store instantly with Gaia currency. [url=http://www.gaiaplatform.com]read more[/url]
[link]

Why Bitcoin Unlimited approach is correct from a Software Architecture point of view

First, I would like to express that the division in the community and the toxicity created by censorship has effected the discussion in both subs ( even though this sub is not censored ). As a community, we have been focused so much on fighting each other we struggle we are beginning to loose our creativity and the spark that made bitcoin great. I see more discussion of politics and name calling and its is beginning to get distracting.
When a heated discussion in software engineering occurs, the best thing both sides can to is to abstract and conceptualize the system we are trying to work on. I consider bitcoin a decentralized system, where the blockchain represents the state of the system. Miners via POW allow the system to converge to a single valid state.
What goes in the blockchain and the definition of a valid state is defined by the client, which implements a protocol that is 'bitcoin'. Ideally, this protocol definition should only specify 'business logic' for example there can be 21 million coins, you cannot materialise money out of thin air, the controlled issuing of coins, you cannot spend coins you don't have, no IOU ect.
However, Satoshi realized that there is an attack vector that effects the consensus system, whereby a miner could artificially create over-sized blocks and give that miner a controllable benefit. The solution to this problem was to introduce a blocksize limit. This is the root problem the blocksize limit is trying to address. The blocksize was not made small so people can run full nodes via TOR or in raspberry pi's
The problem with this fix, is that it introduced technical debt from a software architectural point of view. Because a blocksize limit is not 'business logic' and it had to be included in the consensus layer to resolve this vulnerability. Ideally the consensus layer should be minimal and should contain business logic and not scalability constants...
The system can scale and evolve more easily overtime if the consensus layers has the minimal set of rules ( which we can all agree on).My challenge to both the small and large blockers, is to try and find creative solutions to address the root cause of the blocksize limit.
Why dont we make it costly to artificially create large blocks. The easiest way a miner can increase a blocks size, is by creating thousands of transactions that have no fee and including them...So what if: Each block can only contain X "free transactions", and other transactions in the block must have a fee. Perhaps eve define a function that scales the minimum fee for the other transactions as a function of the block reward. This would make it really expensive for miners to artificially bloat the block. [ Edit ] The only way to defeat this mechanism would be to then pad the block with artificial high fee transactions and withhold these transactions from the network so the miner gets back the fee. The only way to counter this attack is to have some mechanism so a block with high fee 'padding transactions' gets orphaned and the transactions re-entered into the mempool.
tldr Goal: Remove any scaling logic from the consensus layer of bitcoin, which should only contain specification of business logic and block syntax. Hard scaling constants such as max blocksize should not be apart of the consensus logic because their value is subjective and is bad for decentralized systems.
edited to make OP more clear
submitted by Spartan3123 to btc [link] [comments]

solução para receber pagamentos online seguro – 01/05/2018 16:23 EDT | Bitcoin | HTML | PHP | Software Architecture

solução para receber pagamentos online seguro – 01/05/2018 16:23 EDT | Bitcoin | HTML | PHP | Software Architecture submitted by Faouziseo to jobcanada [link] [comments]

Why Bitcoin Unlimited approach is correct from a Software Architecture point of view /r/btc

Why Bitcoin Unlimited approach is correct from a Software Architecture point of view /btc submitted by BitcoinAllBot to BitcoinAll [link] [comments]

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Public Proposal TL;DR:

Dragonchain has demonstrated twice Reddit’s entire total daily volume (votes, comments, and posts per Reddit 2019 Year in Review) in a 24-hour demo on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. At the time, in January 2020, the entire cost of the demo was approximately $25K on a single system (transaction fees locked at $0.0001/txn). With current fees (lowest fee $0.0000025/txn), this would cost as little as $625.
Watch Joe walk through the entire proposal and answer questions on YouTube.
This proposal is also available on the Dragonchain blog.

Hello Reddit and Ethereum community!

I’m Joe Roets, Founder & CEO of Dragonchain. When the team and I first heard about The Great Reddit Scaling Bake-Off we were intrigued. We believe we have the solutions Reddit seeks for its community points system and we have them at scale.
For your consideration, we have submitted our proposal below. The team at Dragonchain and I welcome and look forward to your technical questions, philosophical feedback, and fair criticism, to build a scaling solution for Reddit that will empower its users. Because our architecture is unlike other blockchain platforms out there today, we expect to receive many questions while people try to grasp our project. I will answer all questions here in this thread on Reddit, and I've answered some questions in the stream on YouTube.
We have seen good discussions so far in the competition. We hope that Reddit’s scaling solution will emerge from The Great Reddit Scaling Bake-Off and that Reddit will have great success with the implementation.

Executive summary

Dragonchain is a robust open source hybrid blockchain platform that has proven to withstand the passing of time since our inception in 2014. We have continued to evolve to harness the scalability of private nodes, yet take full advantage of the security of public decentralized networks, like Ethereum. We have a live, operational, and fully functional Interchain network integrating Bitcoin, Ethereum, Ethereum Classic, and ~700 independent Dragonchain nodes. Every transaction is secured to Ethereum, Bitcoin, and Ethereum Classic. Transactions are immediately usable on chain, and the first decentralization is seen within 20 seconds on Dragon Net. Security increases further to public networks ETH, BTC, and ETC within 10 minutes to 2 hours. Smart contracts can be written in any executable language, offering full freedom to existing developers. We invite any developer to watch the demo, play with our SDK’s, review open source code, and to help us move forward. Dragonchain specializes in scalable loyalty & rewards solutions and has built a decentralized social network on chain, with very affordable transaction costs. This experience can be combined with the insights Reddit and the Ethereum community have gained in the past couple of months to roll out the solution at a rapid pace.

Response and PoC

In The Great Reddit Scaling Bake-Off post, Reddit has asked for a series of demonstrations, requirements, and other considerations. In this section, we will attempt to answer all of these requests.

Live Demo

A live proof of concept showing hundreds of thousands of transactions
On Jan 7, 2020, Dragonchain hosted a 24-hour live demonstration during which a quarter of a billion (250 million+) transactions executed fully on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. This means that every single transaction is secured by, and traceable to these networks. An attack on this system would require a simultaneous attack on all of the Interchained networks.
24 hours in 4 minutes (YouTube):
24 hours in 4 minutes
The demonstration was of a single business system, and any user is able to scale this further, by running multiple systems simultaneously. Our goals for the event were to demonstrate a consistent capacity greater than that of Visa over an extended time period.
Tooling to reproduce our demo is available here:
https://github.com/dragonchain/spirit-bomb

Source Code

Source code (for on & off-chain components as well tooling used for the PoC). The source code does not have to be shared publicly, but if Reddit decides to use a particular solution it will need to be shared with Reddit at some point.

Scaling

How it works & scales

Architectural Scaling

Dragonchain’s architecture attacks the scalability issue from multiple angles. Dragonchain is a hybrid blockchain platform, wherein every transaction is protected on a business node to the requirements of that business or purpose. A business node may be held completely private or may be exposed or replicated to any level of exposure desired.
Every node has its own blockchain and is independently scalable. Dragonchain established Context Based Verification as its consensus model. Every transaction is immediately usable on a trust basis, and in time is provable to an increasing level of decentralized consensus. A transaction will have a level of decentralization to independently owned and deployed Dragonchain nodes (~700 nodes) within seconds, and full decentralization to BTC and ETH within minutes or hours. Level 5 nodes (Interchain nodes) function to secure all transactions to public or otherwise external chains such as Bitcoin and Ethereum. These nodes scale the system by aggregating multiple blocks into a single Interchain transaction on a cadence. This timing is configurable based upon average fees for each respective chain. For detailed information about Dragonchain’s architecture, and Context Based Verification, please refer to the Dragonchain Architecture Document.

Economic Scaling

An interesting feature of Dragonchain’s network consensus is its economics and scarcity model. Since Dragon Net nodes (L2-L4) are independent staking nodes, deployment to cloud platforms would allow any of these nodes to scale to take on a large percentage of the verification work. This is great for scalability, but not good for the economy, because there is no scarcity, and pricing would develop a downward spiral and result in fewer verification nodes. For this reason, Dragonchain uses TIME as scarcity.
TIME is calculated as the number of Dragons held, multiplied by the number of days held. TIME influences the user’s access to features within the Dragonchain ecosystem. It takes into account both the Dragon balance and length of time each Dragon is held. TIME is staked by users against every verification node and dictates how much of the transaction fees are awarded to each participating node for every block.
TIME also dictates the transaction fee itself for the business node. TIME is staked against a business node to set a deterministic transaction fee level (see transaction fee table below in Cost section). This is very interesting in a discussion about scaling because it guarantees independence for business implementation. No matter how much traffic appears on the entire network, a business is guaranteed to not see an increased transaction fee rate.

Scaled Deployment

Dragonchain uses Docker and Kubernetes to allow the use of best practices traditional system scaling. Dragonchain offers managed nodes with an easy to use web based console interface. The user may also deploy a Dragonchain node within their own datacenter or favorite cloud platform. Users have deployed Dragonchain nodes on-prem on Amazon AWS, Google Cloud, MS Azure, and other hosting platforms around the world. Any executable code, anything you can write, can be written into a smart contract. This flexibility is what allows us to say that developers with no blockchain experience can use any code language to access the benefits of blockchain. Customers have used NodeJS, Python, Java, and even BASH shell script to write smart contracts on Dragonchain.
With Docker containers, we achieve better separation of concerns, faster deployment, higher reliability, and lower response times.
We chose Kubernetes for its self-healing features, ability to run multiple services on one server, and its large and thriving development community. It is resilient, scalable, and automated. OpenFaaS allows us to package smart contracts as Docker images for easy deployment.
Contract deployment time is now bounded only by the size of the Docker image being deployed but remains fast even for reasonably large images. We also take advantage of Docker’s flexibility and its ability to support any language that can run on x86 architecture. Any image, public or private, can be run as a smart contract using Dragonchain.

Flexibility in Scaling

Dragonchain’s architecture considers interoperability and integration as key features. From inception, we had a goal to increase adoption via integration with real business use cases and traditional systems.
We envision the ability for Reddit, in the future, to be able to integrate alternate content storage platforms or other financial services along with the token.
  • LBRY - To allow users to deploy content natively to LBRY
  • MakerDAO to allow users to lend small amounts backed by their Reddit community points.
  • STORJ/SIA to allow decentralized on chain storage of portions of content. These integrations or any other are relatively easy to integrate on Dragonchain with an Interchain implementation.

Cost

Cost estimates (on-chain and off-chain) For the purpose of this proposal, we assume that all transactions are on chain (posts, replies, and votes).
On the Dragonchain network, transaction costs are deterministic/predictable. By staking TIME on the business node (as described above) Reddit can reduce transaction costs to as low as $0.0000025 per transaction.
Dragonchain Fees Table

Getting Started

How to run it
Building on Dragonchain is simple and requires no blockchain experience. Spin up a business node (L1) in our managed environment (AWS), run it in your own cloud environment, or on-prem in your own datacenter. Clear documentation will walk you through the steps of spinning up your first Dragonchain Level 1 Business node.
Getting started is easy...
  1. Download Dragonchain’s dctl
  2. Input three commands into a terminal
  3. Build an image
  4. Run it
More information can be found in our Get started documents.

Architecture
Dragonchain is an open source hybrid platform. Through Dragon Net, each chain combines the power of a public blockchain (like Ethereum) with the privacy of a private blockchain.
Dragonchain organizes its network into five separate levels. A Level 1, or business node, is a totally private blockchain only accessible through the use of public/private keypairs. All business logic, including smart contracts, can be executed on this node directly and added to the chain.
After creating a block, the Level 1 business node broadcasts a version stripped of sensitive private data to Dragon Net. Three Level 2 Validating nodes validate the transaction based on guidelines determined from the business. A Level 3 Diversity node checks that the level 2 nodes are from a diverse array of locations. A Level 4 Notary node, hosted by a KYC partner, then signs the validation record received from the Level 3 node. The transaction hash is ledgered to the Level 5 public chain to take advantage of the hash power of massive public networks.
Dragon Net can be thought of as a “blockchain of blockchains”, where every level is a complete private blockchain. Because an L1 can send to multiple nodes on a single level, proof of existence is distributed among many places in the network. Eventually, proof of existence reaches level 5 and is published on a public network.

API Documentation

APIs (on chain & off)

SDK Source

Nobody’s Perfect

Known issues or tradeoffs
  • Dragonchain is open source and even though the platform is easy enough for developers to code in any language they are comfortable with, we do not have so large a developer community as Ethereum. We would like to see the Ethereum developer community (and any other communities) become familiar with our SDK’s, our solutions, and our platform, to unlock the full potential of our Ethereum Interchain. Long ago we decided to prioritize both Bitcoin and Ethereum Interchains. We envision an ecosystem that encompasses different projects to give developers the ability to take full advantage of all the opportunities blockchain offers to create decentralized solutions not only for Reddit but for all of our current platforms and systems. We believe that together we will take the adoption of blockchain further. We currently have additional Interchain with Ethereum Classic. We look forward to Interchain with other blockchains in the future. We invite all blockchains projects who believe in decentralization and security to Interchain with Dragonchain.
  • While we only have 700 nodes compared to 8,000 Ethereum and 10,000 Bitcoin nodes. We harness those 18,000 nodes to scale to extremely high levels of security. See Dragonchain metrics.
  • Some may consider the centralization of Dragonchain’s business nodes as an issue at first glance, however, the model is by design to protect business data. We do not consider this a drawback as these nodes can make any, none, or all data public. Depending upon the implementation, every subreddit could have control of its own business node, for potential business and enterprise offerings, bringing new alternative revenue streams to Reddit.

Costs and resources

Summary of cost & resource information for both on-chain & off-chain components used in the PoC, as well as cost & resource estimates for further scaling. If your PoC is not on mainnet, make note of any mainnet caveats (such as congestion issues).
Every transaction on the PoC system had a transaction fee of $0.0001 (one-hundredth of a cent USD). At 256MM transactions, the demo cost $25,600. With current operational fees, the same demonstration would cost $640 USD.
For the demonstration, to achieve throughput to mimic a worldwide payments network, we modeled several clients in AWS and 4-5 business nodes to handle the traffic. The business nodes were tuned to handle higher throughput by adjusting memory and machine footprint on AWS. This flexibility is valuable to implementing a system such as envisioned by Reddit. Given that Reddit’s daily traffic (posts, replies, and votes) is less than half that of our demo, we would expect that the entire Reddit system could be handled on 2-5 business nodes using right-sized containers on AWS or similar environments.
Verification was accomplished on the operational Dragon Net network with over 700 independently owned verification nodes running around the world at no cost to the business other than paid transaction fees.

Requirements

Scaling

This PoC should scale to the numbers below with minimal costs (both on & off-chain). There should also be a clear path to supporting hundreds of millions of users.
Over a 5 day period, your scaling PoC should be able to handle:
*100,000 point claims (minting & distributing points) *25,000 subscriptions *75,000 one-off points burning *100,000 transfers
During Dragonchain’s 24 hour demo, the above required numbers were reached within the first few minutes.
Reddit’s total activity is 9000% more than Ethereum’s total transaction level. Even if you do not include votes, it is still 700% more than Ethereum’s current volume. Dragonchain has demonstrated that it can handle 250 million transactions a day, and it’s architecture allows for multiple systems to work at that level simultaneously. In our PoC, we demonstrate double the full capacity of Reddit, and every transaction was proven all the way to Bitcoin and Ethereum.
Reddit Scaling on Ethereum

Decentralization

Solutions should not depend on any single third-party provider. We prefer solutions that do not depend on specific entities such as Reddit or another provider, and solutions with no single point of control or failure in off-chain components but recognize there are numerous trade-offs to consider
Dragonchain’s architecture calls for a hybrid approach. Private business nodes hold the sensitive data while the validation and verification of transactions for the business are decentralized within seconds and secured to public blockchains within 10 minutes to 2 hours. Nodes could potentially be controlled by owners of individual subreddits for more organic decentralization.
  • Billing is currently centralized - there is a path to federation and decentralization of a scaled billing solution.
  • Operational multi-cloud
  • Operational on-premises capabilities
  • Operational deployment to any datacenter
  • Over 700 independent Community Verification Nodes with proof of ownership
  • Operational Interchain (Interoperable to Bitcoin, Ethereum, and Ethereum Classic, open to more)

Usability Scaling solutions should have a simple end user experience.

Users shouldn't have to maintain any extra state/proofs, regularly monitor activity, keep track of extra keys, or sign anything other than their normal transactions
Dragonchain and its customers have demonstrated extraordinary usability as a feature in many applications, where users do not need to know that the system is backed by a live blockchain. Lyceum is one of these examples, where the progress of academy courses is being tracked, and successful completion of courses is rewarded with certificates on chain. Our @Save_The_Tweet bot is popular on Twitter. When used with one of the following hashtags - #please, #blockchain, #ThankYou, or #eternalize the tweet is saved through Eternal to multiple blockchains. A proof report is available for future reference. Other examples in use are DEN, our decentralized social media platform, and our console, where users can track their node rewards, view their TIME, and operate a business node.
Examples:

Transactions complete in a reasonable amount of time (seconds or minutes, not hours or days)
All transactions are immediately usable on chain by the system. A transaction begins the path to decentralization at the conclusion of a 5-second block when it gets distributed across 5 separate community run nodes. Full decentralization occurs within 10 minutes to 2 hours depending on which interchain (Bitcoin, Ethereum, or Ethereum Classic) the transaction hits first. Within approximately 2 hours, the combined hash power of all interchained blockchains secures the transaction.

Free to use for end users (no gas fees, or fixed/minimal fees that Reddit can pay on their behalf)
With transaction pricing as low as $0.0000025 per transaction, it may be considered reasonable for Reddit to cover transaction fees for users.
All of Reddit's Transactions on Blockchain (month)
Community points can be earned by users and distributed directly to their Reddit account in batch (as per Reddit minting plan), and allow users to withdraw rewards to their Ethereum wallet whenever they wish. Withdrawal fees can be paid by either user or Reddit. This model has been operating inside the Dragonchain system since 2018, and many security and financial compliance features can be optionally added. We feel that this capability greatly enhances user experience because it is seamless to a regular user without cryptocurrency experience, yet flexible to a tech savvy user. With regard to currency or token transactions, these would occur on the Reddit network, verified to BTC and ETH. These transactions would incur the $0.0000025 transaction fee. To estimate this fee we use the monthly active Reddit users statista with a 60% adoption rate and an estimated 10 transactions per month average resulting in an approximate $720 cost across the system. Reddit could feasibly incur all associated internal network charges (mining/minting, transfer, burn) as these are very low and controllable fees.
Reddit Internal Token Transaction Fees

Reddit Ethereum Token Transaction Fees
When we consider further the Ethereum fees that might be incurred, we have a few choices for a solution.
  1. Offload all Ethereum transaction fees (user withdrawals) to interested users as they wish to withdraw tokens for external use or sale.
  2. Cover Ethereum transaction fees by aggregating them on a timed schedule. Users would request withdrawal (from Reddit or individual subreddits), and they would be transacted on the Ethereum network every hour (or some other schedule).
  3. In a combination of the above, customers could cover aggregated fees.
  4. Integrate with alternate Ethereum roll up solutions or other proposals to aggregate minting and distribution transactions onto Ethereum.

Bonus Points

Users should be able to view their balances & transactions via a blockchain explorer-style interface
From interfaces for users who have no knowledge of blockchain technology to users who are well versed in blockchain terms such as those present in a typical block explorer, a system powered by Dragonchain has flexibility on how to provide balances and transaction data to users. Transactions can be made viewable in an Eternal Proof Report, which displays raw data along with TIME staking information and traceability all the way to Bitcoin, Ethereum, and every other Interchained network. The report shows fields such as transaction ID, timestamp, block ID, multiple verifications, and Interchain proof. See example here.
Node payouts within the Dragonchain console are listed in chronological order and can be further seen in either Dragons or USD. See example here.
In our social media platform, Dragon Den, users can see, in real-time, their NRG and MTR balances. See example here.
A new influencer app powered by Dragonchain, Raiinmaker, breaks down data into a user friendly interface that shows coin portfolio, redeemed rewards, and social scores per campaign. See example here.

Exiting is fast & simple
Withdrawing funds on Dragonchain’s console requires three clicks, however, withdrawal scenarios with more enhanced security features per Reddit’s discretion are obtainable.

Interoperability Compatibility with third party apps (wallets/contracts/etc) is necessary.
Proven interoperability at scale that surpasses the required specifications. Our entire platform consists of interoperable blockchains connected to each other and traditional systems. APIs are well documented. Third party permissions are possible with a simple smart contract without the end user being aware. No need to learn any specialized proprietary language. Any code base (not subsets) is usable within a Docker container. Interoperable with any blockchain or traditional APIs. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js. Please see our source code and API documentation.

Scaling solutions should be extensible and allow third parties to build on top of it Open source and extensible
APIs should be well documented and stable

Documentation should be clear and complete
For full documentation, explore our docs, SDK’s, Github repo’s, architecture documents, original Disney documentation, and other links or resources provided in this proposal.

Third-party permissionless integrations should be possible & straightforward Smart contracts are Docker based, can be written in any language, use full language (not subsets), and can therefore be integrated with any system including traditional system APIs. Simple is better. Learning an uncommon or proprietary language should not be necessary.
Advanced knowledge of mathematics, cryptography, or L2 scaling should not be required. Compatibility with common utilities & toolchains is expected.
Dragonchain business nodes and smart contracts leverage Docker to allow the use of literally any language or executable code. No proprietary language is necessary. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js.

Bonus

Bonus Points: Show us how it works. Do you have an idea for a cool new use case for Community Points? Build it!

TIME

Community points could be awarded to Reddit users based upon TIME too, whereas the longer someone is part of a subreddit, the more community points someone naturally gained, even if not actively commenting or sharing new posts. A daily login could be required for these community points to be credited. This grants awards to readers too and incentivizes readers to create an account on Reddit if they browse the website often. This concept could also be leveraged to provide some level of reputation based upon duration and consistency of contribution to a community subreddit.

Dragon Den

Dragonchain has already built a social media platform that harnesses community involvement. Dragon Den is a decentralized community built on the Dragonchain blockchain platform. Dragon Den is Dragonchain’s answer to fake news, trolling, and censorship. It incentivizes the creation and evaluation of quality content within communities. It could be described as being a shareholder of a subreddit or Reddit in its entirety. The more your subreddit is thriving, the more rewarding it will be. Den is currently in a public beta and in active development, though the real token economy is not live yet. There are different tokens for various purposes. Two tokens are Lair Ownership Rights (LOR) and Lair Ownership Tokens (LOT). LOT is a non-fungible token for ownership of a specific Lair. LOT will only be created and converted from LOR.
Energy (NRG) and Matter (MTR) work jointly. Your MTR determines how much NRG you receive in a 24-hour period. Providing quality content, or evaluating content will earn MTR.

Security. Users have full ownership & control of their points.
All community points awarded based upon any type of activity or gift, are secured and provable to all Interchain networks (currently BTC, ETH, ETC). Users are free to spend and withdraw their points as they please, depending on the features Reddit wants to bring into production.

Balances and transactions cannot be forged, manipulated, or blocked by Reddit or anyone else
Users can withdraw their balance to their ERC20 wallet, directly through Reddit. Reddit can cover the fees on their behalf, or the user covers this with a portion of their balance.

Users should own their points and be able to get on-chain ERC20 tokens without permission from anyone else
Through our console users can withdraw their ERC20 rewards. This can be achieved on Reddit too. Here is a walkthrough of our console, though this does not show the quick withdrawal functionality, a user can withdraw at any time. https://www.youtube.com/watch?v=aNlTMxnfVHw

Points should be recoverable to on-chain ERC20 tokens even if all third-parties involved go offline
If necessary, signed transactions from the Reddit system (e.g. Reddit + Subreddit) can be sent to the Ethereum smart contract for minting.

A public, third-party review attesting to the soundness of the design should be available
To our knowledge, at least two large corporations, including a top 3 accounting firm, have conducted positive reviews. These reviews have never been made public, as Dragonchain did not pay or contract for these studies to be released.

Bonus points
Public, third-party implementation review available or in progress
See above

Compatibility with HSMs & hardware wallets
For the purpose of this proposal, all tokenization would be on the Ethereum network using standard token contracts and as such, would be able to leverage all hardware wallet and Ethereum ecosystem services.

Other Considerations

Minting/distributing tokens is not performed by Reddit directly
This operation can be automated by smart contract on Ethereum. Subreddits can if desired have a role to play.

One off point burning, as well as recurring, non-interactive point burning (for subreddit memberships) should be possible and scalable
This is possible and scalable with interaction between Dragonchain Reddit system and Ethereum token contract(s).

Fully open-source solutions are strongly preferred
Dragonchain is fully open source (see section on Disney release after conclusion).

Conclusion

Whether it is today, or in the future, we would like to work together to bring secure flexibility to the highest standards. It is our hope to be considered by Ethereum, Reddit, and other integrative solutions so we may further discuss the possibilities of implementation. In our public demonstration, 256 million transactions were handled in our operational network on chain in 24 hours, for the low cost of $25K, which if run today would cost $625. Dragonchain’s interoperable foundation provides the atmosphere necessary to implement a frictionless community points system. Thank you for your consideration of our proposal. We look forward to working with the community to make something great!

Disney Releases Blockchain Platform as Open Source

The team at Disney created the Disney Private Blockchain Platform. The system was a hybrid interoperable blockchain platform for ledgering and smart contract development geared toward solving problems with blockchain adoption and usability. All objective evaluation would consider the team’s output a success. We released a list of use cases that we explored in some capacity at Disney, and our input on blockchain standardization as part of our participation in the W3C Blockchain Community Group.
https://lists.w3.org/Archives/Public/public-blockchain/2016May/0052.html

Open Source

In 2016, Roets proposed to release the platform as open source to spread the technology outside of Disney, as others within the W3C group were interested in the solutions that had been created inside of Disney.
Following a long process, step by step, the team met requirements for release. Among the requirements, the team had to:
  • Obtain VP support and approval for the release
  • Verify ownership of the software to be released
  • Verify that no proprietary content would be released
  • Convince the organization that there was a value to the open source community
  • Convince the organization that there was a value to Disney
  • Offer the plan for ongoing maintenance of the project outside of Disney
  • Itemize competing projects
  • Verify no conflict of interest
  • Preferred license
  • Change the project name to not use the name Disney, any Disney character, or any other associated IP - proposed Dragonchain - approved
  • Obtain legal approval
  • Approval from corporate, parks, and other business units
  • Approval from multiple Disney patent groups Copyright holder defined by Disney (Disney Connected and Advanced Technologies)
  • Trademark searches conducted for the selected name Dragonchain
  • Obtain IT security approval
  • Manual review of OSS components conducted
  • OWASP Dependency and Vulnerability Check Conducted
  • Obtain technical (software) approval
  • Offer management, process, and financial plans for the maintenance of the project.
  • Meet list of items to be addressed before release
  • Remove all Disney project references and scripts
  • Create a public distribution list for email communications
  • Remove Roets’ direct and internal contact information
  • Create public Slack channel and move from Disney slack channels
  • Create proper labels for issue tracking
  • Rename internal private Github repository
  • Add informative description to Github page
  • Expand README.md with more specific information
  • Add information beyond current “Blockchains are Magic”
  • Add getting started sections and info on cloning/forking the project
  • Add installation details
  • Add uninstall process
  • Add unit, functional, and integration test information
  • Detail how to contribute and get involved
  • Describe the git workflow that the project will use
  • Move to public, non-Disney git repository (Github or Bitbucket)
  • Obtain Disney Open Source Committee approval for release
On top of meeting the above criteria, as part of the process, the maintainer of the project had to receive the codebase on their own personal email and create accounts for maintenance (e.g. Github) with non-Disney accounts. Given the fact that the project spanned multiple business units, Roets was individually responsible for its ongoing maintenance. Because of this, he proposed in the open source application to create a non-profit organization to hold the IP and maintain the project. This was approved by Disney.
The Disney Open Source Committee approved the application known as OSSRELEASE-10, and the code was released on October 2, 2016. Disney decided to not issue a press release.
Original OSSRELASE-10 document

Dragonchain Foundation

The Dragonchain Foundation was created on January 17, 2017. https://den.social/l/Dragonchain/24130078352e485d96d2125082151cf0/dragonchain-and-disney/
submitted by j0j0r0 to ethereum [link] [comments]

Why Osana takes so long? (Programmer's point of view on current situation)

I decided to write a comment about «Why Osana takes so long?» somewhere and what can be done to shorten this time. It turned into a long essay. Here's TL;DR of it:
The cost of never paying down this technical debt is clear; eventually the cost to deliver functionality will become so slow that it is easy for a well-designed competitive software product to overtake the badly-designed software in terms of features. In my experience, badly designed software can also lead to a more stressed engineering workforce, in turn leading higher staff churn (which in turn affects costs and productivity when delivering features). Additionally, due to the complexity in a given codebase, the ability to accurately estimate work will also disappear.
Junade Ali, Mastering PHP Design Patterns (2016)
Longer version: I am not sure if people here wanted an explanation from a real developer who works with C and with relatively large projects, but I am going to do it nonetheless. I am not much interested in Yandere Simulator nor in this genre in general, but this particular development has a lot to learn from for any fellow programmers and software engineers to ensure that they'll never end up in Alex's situation, especially considering that he is definitely not the first one to got himself knee-deep in the development hell (do you remember Star Citizen?) and he is definitely not the last one.
On the one hand, people see that Alex works incredibly slowly, equivalent of, like, one hour per day, comparing it with, say, Papers, Please, the game that was developed in nine months from start to finish by one guy. On the other hand, Alex himself most likely thinks that he works until complete exhaustion each day. In fact, I highly suspect that both those sentences are correct! Because of the mistakes made during early development stages, which are highly unlikely to be fixed due to the pressure put on the developer right now and due to his overall approach to coding, cost to add any relatively large feature (e.g. Osana) can be pretty much comparable to the cost of creating a fan game from start to finish. Trust me, I've seen his leaked source code (don't tell anybody about that) and I know what I am talking about. The largest problem in Yandere Simulator right now is its super slow development. So, without further ado, let's talk about how «implementing the low hanging fruit» crippled the development and, more importantly, what would have been an ideal course of action from my point of view to get out. I'll try to explain things in the easiest terms possible.
  1. else if's and lack any sort of refactoring in general
The most «memey» one. I won't talk about the performance though (switch statement is not better in terms of performance, it is a myth. If compiler detects some code that can be turned into a jump table, for example, it will do it, no matter if it is a chain of if's or a switch statement. Compilers nowadays are way smarter than one might think). Just take a look here. I know that it's his older JavaScript code, but, believe it or not, this piece is still present in C# version relatively untouched.
I refactored this code for you using C language (mixed with C++ since there's no this pointer in pure C). Take a note that else if's are still there, else if's are not the problem by itself.
The refactored code is just objectively better for one simple reason: it is shorter, while not being obscure, and now it should be able to handle, say, Trespassing and Blood case without any input from the developer due to the usage of flags. Basically, the shorter your code, the more you can see on screen without spreading your attention too much. As a rule of thumb, the less lines there are, the easier it is for you to work with the code. Just don't overkill that, unless you are going to participate in International Obfuscated C Code Contest. Let me reiterate:
Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.
Antoine de Saint-Exupéry
This is why refactoring — activity of rewriting your old code so it does the same thing, but does it quicker, in a more generic way, in less lines or simpler — is so powerful. In my experience, you can only keep one module/class/whatever in your brain if it does not exceed ~1000 lines, maybe ~1500. Splitting 17000-line-long class into smaller classes probably won't improve performance at all, but it will make working with parts of this class way easier.
Is it too late now to start refactoring? Of course NO: better late than never.
  1. Comments
If you think that you wrote this code, so you'll always easily remember it, I have some bad news for you: you won't. In my experience, one week and that's it. That's why comments are so crucial. It is not necessary to put a ton of comments everywhere, but just a general idea will help you out in the future. Even if you think that It Just Works™ and you'll never ever need to fix it. Time spent to write and debug one line of code almost always exceeds time to write one comment in large-scale projects. Moreover, the best code is the code that is self-evident. In the example above, what the hell does (float) 6 mean? Why not wrap it around into the constant with a good, self-descriptive name? Again, it won't affect performance, since C# compiler is smart enough to silently remove this constant from the real code and place its value into the method invocation directly. Such constants are here for you.
I rewrote my code above a little bit to illustrate this. With those comments, you don't have to remember your code at all, since its functionality is outlined in two tiny lines of comments above it. Moreover, even a person with zero knowledge in programming will figure out the purpose of this code. It took me less than half a minute to write those comments, but it'll probably save me quite a lot of time of figuring out «what was I thinking back then» one day.
Is it too late now to start adding comments? Again, of course NO. Don't be lazy and redirect all your typing from «debunk» page (which pretty much does the opposite of debunking, but who am I to judge you here?) into some useful comments.
  1. Unit testing
This is often neglected, but consider the following. You wrote some code, you ran your game, you saw a new bug. Was it introduced right now? Is it a problem in your older code which has shown up just because you have never actually used it until now? Where should you search for it? You have no idea, and you have one painful debugging session ahead. Just imagine how easier it would be if you've had some routines which automatically execute after each build and check that environment is still sane and nothing broke on a fundamental level. This is called unit testing, and yes, unit tests won't be able to catch all your bugs, but even getting 20% of bugs identified at the earlier stage is a huge boon to development speed.
Is it too late now to start adding unit tests? Kinda YES and NO at the same time. Unit testing works best if it covers the majority of project's code. On the other side, a journey of a thousand miles begins with a single step. If you decide to start refactoring your code, writing a unit test before refactoring will help you to prove to yourself that you have not broken anything without the need of running the game at all.
  1. Static code analysis
This is basically pretty self-explanatory. You set this thing once, you forget about it. Static code analyzer is another «free estate» to speed up the development process by finding tiny little errors, mostly silly typos (do you think that you are good enough in finding them? Well, good luck catching x << 4; in place of x <<= 4; buried deep in C code by eye!). Again, this is not a silver bullet, it is another tool which will help you out with debugging a little bit along with the debugger, unit tests and other things. You need every little bit of help here.
Is it too late now to hook up static code analyzer? Obviously NO.
  1. Code architecture
Say, you want to build Osana, but then you decided to implement some feature, e.g. Snap Mode. By doing this you have maybe made your game a little bit better, but what you have just essentially done is complicated your life, because now you should also write Osana code for Snap Mode. The way game architecture is done right now, easter eggs code is deeply interleaved with game logic, which leads to code «spaghettifying», which in turn slows down the addition of new features, because one has to consider how this feature would work alongside each and every old feature and easter egg. Even if it is just gazing over one line per easter egg, it adds up to the mess, slowly but surely.
A lot of people mention that developer should have been doing it in object-oritented way. However, there is no silver bullet in programming. It does not matter that much if you are doing it object-oriented way or usual procedural way; you can theoretically write, say, AI routines on functional (e.g. LISP)) or even logical language if you are brave enough (e.g. Prolog). You can even invent your own tiny programming language! The only thing that matters is code quality and avoiding the so-called shotgun surgery situation, which plagues Yandere Simulator from top to bottom right now. Is there a way of adding a new feature without interfering with your older code (e.g. by creating a child class which will encapsulate all the things you need, for example)? Go for it, this feature is basically «free» for you. Otherwise you'd better think twice before doing this, because you are going into the «technical debt» territory, borrowing your time from the future by saying «I'll maybe optimize it later» and «a thousand more lines probably won't slow me down in the future that much, right?». Technical debt will incur interest on its own that you'll have to pay. Basically, the entire situation around Osana right now is just a huge tale about how just «interest» incurred by technical debt can control the entire project, like the tail wiggling the dog.
I won't elaborate here further, since it'll take me an even larger post to fully describe what's wrong about Yandere Simulator's code architecture.
Is it too late to rebuild code architecture? Sadly, YES, although it should be possible to split Student class into descendants by using hooks for individual students. However, code architecture can be improved by a vast margin if you start removing easter eggs and features like Snap Mode that currently bloat Yandere Simulator. I know it is going to be painful, but it is the only way to improve code quality here and now. This will simplify the code, and this will make it easier for you to add the «real» features, like Osana or whatever you'd like to accomplish. If you'll ever want them back, you can track them down in Git history and re-implement them one by one, hopefully without performing the shotgun surgery this time.
  1. Loading times
Again, I won't be talking about the performance, since you can debug your game on 20 FPS as well as on 60 FPS, but this is a very different story. Yandere Simulator is huge. Once you fixed a bug, you want to test it, right? And your workflow right now probably looks like this:
  1. Fix the code (unavoidable time loss)
  2. Rebuild the project (can take a loooong time)
  3. Load your game (can take a loooong time)
  4. Test it (unavoidable time loss, unless another bug has popped up via unit testing, code analyzer etc.)
And you can fix it. For instance, I know that Yandere Simulator makes all the students' photos during loading. Why should that be done there? Why not either move it to project building stage by adding build hook so Unity does that for you during full project rebuild, or, even better, why not disable it completely or replace with «PLACEHOLDER» text for debug builds? Each second spent watching the loading screen will be rightfully interpreted as «son is not coding» by the community.
Is it too late to reduce loading times? Hell NO.
  1. Jenkins
Or any other continuous integration tool. «Rebuild a project» can take a long time too, and what can we do about that? Let me give you an idea. Buy a new PC. Get a 32-core Threadripper, 32 GB of fastest RAM you can afford and a cool motherboard which would support all of that (of course, Ryzen/i5/Celeron/i386/Raspberry Pi is fine too, but the faster, the better). The rest is not necessary, e.g. a barely functional second hand video card burned out by bitcoin mining is fine. You set up another PC in your room. You connect it to your network. You set up ramdisk to speed things up even more. You properly set up Jenkins) on this PC. From now on, Jenkins cares about the rest: tracking your Git repository, (re)building process, large and time-consuming unit tests, invoking static code analyzer, profiling, generating reports and whatever else you can and want to hook up. More importantly, you can fix another bug while Jenkins is rebuilding the project for the previous one et cetera.
In general, continuous integration is a great technology to quickly track down errors that were introduced in previous versions, attempting to avoid those kinds of bug hunting sessions. I am highly unsure if continuous integration is needed for 10000-20000 source lines long projects, but things can be different as soon as we step into the 100k+ territory, and Yandere Simulator by now has approximately 150k+ source lines of code. I think that probably continuous integration might be well worth it for Yandere Simulator.
Is it too late to add continuous integration? NO, albeit it is going to take some time and skills to set up.
  1. Stop caring about the criticism
Stop comparing Alex to Scott Cawton. IMO Alex is very similar to the person known as SgtMarkIV, the developer of Brutal Doom, who is also a notorious edgelord who, for example, also once told somebody to kill himself, just like… However, being a horrible person, SgtMarkIV does his job. He simply does not care much about public opinion. That's the difference.
  1. Go outside
Enough said. Your brain works slower if you only think about games and if you can't provide it with enough oxygen supply. I know that this one is probably the hardest to implement, but…
That's all, folks.
Bonus: Do you think how short this list would have been if someone just simply listened to Mike Zaimont instead of breaking down in tears?
submitted by Dezhitse to Osana [link] [comments]

Decentr ($DEC) - foundational cross-chain and cross-platform DeFi protocol

  1. SUMMARY
Decentr is a protocol designed to make blockchain/DLT mainstream by allowing DeFi applications built on various blockchains to “talk to each other”. Decentr is a 100% secure and decentralised Web 3.0 protocol where users can apply PDV (personal data value) to increase APR on $DEC that users loan out as part of of our DeFi dLoan features, as well as it being applied at PoS when paying for stuff online. Decentr is also building a BAT competitor browser and Chrome/Firefox extension that acts as a gateway to 100% decentralised Web 3.0
Allows DeFi Dapps to access all Decentr’s dFintech features, including dLoan, dPay. Key innovation is that the protocols is based on a user’s ability to leverage the value of their data as exchangeable “currency”.
  1. KEY CONCEPTS

  1. REVENUE MODEL
A fee is charged for every transaction using dPay whereby an exchange takes place between money (fiat and digital) and data, and vice versa, either as part of DeFi features or via a dApp built on Decentr. They are launching pilot programmes in the following industries:
  1. Banking/PSP Industry: On Product launch, due to Decentr’s powerful PSP connections (including the worlds #2 PSP by volume), a medium-scale pilot program will be launched, which will seed the network with 150,000 PSP customers in primarily the Spanish/LAC markets, generating revenue from day one.
  2. “Bricks and Mortar” Supermarket/Grocery Industry: Decentr aims to ensure the long-term competitiveness of “bricks and mortar” supermarkets against online-only grocery retailers, such as Amazon, by a) building secure tech that allows supermarkets to digitise every aspect of their supply chains and operational functions, while b) allowing supermarkets to leverage this incredibly valuable data as a liquid asset class. Expected revenue by Year 5: $114Mn per year.
  3. Online Advertising Industry: Decentr’s 100% decentralised platform credits users secure data with payable value, in the form of PDV, for engaging with ads. The Brave browser was launched in 2012 and in 8 years has reached over 12 million monthly active users, accented by as many as 4.3 million daily active users.
  4. TOKEN $DEC AND SALE
Decentr recently complete their token sale on a purchase portal powered by Dolomite where they raised $974,000 in 10 minutes for a total sale hardcap of 1.25M. The $DEC token is actively trading on multiple exchanges including Uniswap and IDEX. Listed for free on IDEX, Hotbit, Hoo, Coinw, Tidex, BKex. Listed on CoinGecko and Coinmarketcap. Listed on Delta and Blockfolio apps.
➡️ Circulating supply: 61m $DEC.
➡️ Release schedule and token distribution LINK -> NO RELEASE UNTIL 2021.
➡️Contract Address - 0x30f271C9E86D2B7d00a6376Cd96A1cFBD5F0b9b3
➡️Decimals - 18, Ticker - DEC
➡️Uniswap link: https://uniswap.info/pai0x3AEEE5bA053eF8406420DbC5801fC95eC57b0E0A
⭐️ HOW TO BUY VIDEO: https://www.youtube.com/watch?v=iloAiv2oCRc&feature=youtu.be
$DEC Token utility:
A tradeable unit of value that is both internal and external to the Decentr platform.A unit of conversion between fiat entering and exiting the Decentr ecosystem.A way to capture the value of user data and combines the activity of every participant of the platform performing payment (dPay), or lending and borrowing (dLend), i.e a way to peg PDV to tangible/actionable value.Method of payment in the Decentr ecosystem.A method to internally underwrite the “Deconomy.
  1. NOTABLE SUPPORTERS
Simon Dedic - chief of Blockfyre: https://twitter.com/scoinaldo/status/1283787644221218817?s=20https://twitter.com/scoinaldo/status/1283719917657894912?s=21
Spectre Group Pick : https://twitter.com/SPECTREGRP/status/1284761576873041920https://twitter.com/llluckyl/status/1283765481716015111?s=21
Patrons of the Moon/Lil Uzi: https://t.me/patronsofthemoon/6764
CryptoGems: https://twitter.com/cryptogems_com/status/1283719318379925506?s=09t
tehMoonwalker pick who is a TOP 5 influencer per Binance:https://twitter.com/tehMoonwalkestatus/1284123961996050432?s=20https://twitter.com/binance/status/1279049822113198080
Holochain was one of their earliest supporters and they share a deep connection (recently an AMA was conducted in their TG group): https://medium.com/@DecentrNet/decentr-holochain-ama-29d662caed03
  1. UPCOMING NEWS
--------------------------------------------
  1. RESOURCES:
Website: https://decentr.net
Telegram: https://t.me/DecentrNet
Medium: https://medium.com/@DecentrNet
Twitter: https://twitter.com/DecentrNet
Whitepaper: https://decentr.net/files/Decentr_Whitepaper_V1.4.pdf
Technical Whitepaper: https://decentr.net/files/Decentr_Technical_Whitepaper_Data_As_Economic_Currency.pdf
Recent Articles:
⚡️- https://medium.com/@DecentrNet/decentr-token-sale-metrics-and-distribution-483bb3c58d05
⚡️- https://medium.com/@DecentrNet/how-decentrs-defi-dloan-function-benefits-dec-holders-97ff64a0c105
⚡️- https://medium.com/@DecentrNet/3-vertical-revenue-streams-decentr-is-targeting-4fa1f3dd62de
⚡️- https://medium.com/@DecentrNet/brave-browser-the-good-the-bad-and-the-fundamentally-misguided-8a8593b0ff5b
⚡️- https://medium.com/@DecentrNet/how-decentrs-dfintech-replaces-swift-sct-inst-clearing-house-and-other-payment-solutions-78acacbb4c3f
Chad Gang STRONG Community: https://t.me/decentrtrading
Community News Channel: https://t.me/chadnews
Recent Uniswap trades: https://t.me/dectrades
Wallet holder tracker: https://t.me/DEC_WALLETS_COUNT
submitted by ldd999 to CryptoMoonShots [link] [comments]

NEAR PROJECT REPORT

NEAR PROJECT REPORT
Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/xbnvecjn71t51.png?width=1164&format=png&auto=webp&s=acfd141ead035ee156f218eec9fc41288142a922

ABSTRACT

The effects of the web by a number of companies have seduced a large number of users as these companies keep their data to prevent them from searching for alternatives. Likewise, these huge platforms have attracted applications to build their highest ecosystems before either severing access or actively opposing their interests when the applications became so successful. As a result, these walled gardens have effectively hindered innovation and monopolized large sections of the web. After the emergence of blockchain technology and decentralized cryptocurrencies, the need for applications to support decentralization has emerged. Several blockchain-based companies, applications and platforms have appeared in decentralization. In this research report, we will explain the approach adopted by the NEAR decentralization platform in designing and implementing the basic technology for its system. Near is a basic platform for cloud computing and decentralized storage managed by the community, designed to enable the open web for the future. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.

1. INTRODUCTION

The richness of the web is increasing day by day with the combined efforts of millions of people who have benefited from “innovation without permission” as content and applications are created without asking anyone. this lack of freedom of data has led to an environment hostile to the interests of its participants. And as we explained in the summary previously, web hosting companies have hindered innovation and greatly monopolized the web.
In the future, we can fix this by using new technologies to re-enable the permissionless innovation of the past in a way, which creates a more open web where users are free and applications are supportive rather than adversarial to their interests.
Decentralization emerged after the global financial crisis in 2008, which created fundamental problems of confidence in the heavily indebted banking system. Then the decentralized financial sector based on Blockchain technology has emerged since 2009.
Decentralized Blockchain technology has made it easy for decentralized digital currencies like Bitcoin to exchange billions of dollars in peer-to-peer transfers for a fraction of the price of a traditional banking system. This technology allows participants in the over $ 50 billion virtual goods economy to track, own and trade in these commodities without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
By default, the Internet where freedom of data enables innovation will lead to the development of a new form of software development. On this web, developers can quickly create applications from open state components and boost their efforts by using new business models that are enabled from within the program itself rather than relying on parasitic relationships with their users. This not only accelerates the creation of applications that have a more honest and cooperative relationship with its users, but also allows the emergence of completely new business built on them.
To enable these new applications and the open web, it needs the appropriate infrastructure. The new web platform cannot be controlled by a single entity and its use is not limited due to insufficient scalability. It should be decentralized in design like the web itself and supported by a community of distributors widely so that the value they store cannot be monitored, modified or removed without permission from the users who store this value on their behalf.
A new decentralization technology (Blockchain), which has facilitated decentralized digital currencies like Bitcoin, has made billions of dollars in peer-to-peer transfers at a fraction of the price of the traditional banking system. This technology allows participants in the $ 50 billion + virtual goods economy to track, own and trade in these goods without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
Although the cost of storing data or performing a calculation on the Ethereum blockchain is thousands and millions of times higher than the cost of performing the same functionality on Amazon Web Services. A developer can always create a “central” app or even a central currency for a fraction of the cost of doing the same on a decentralized platform because a decentralized platform, by definition, will have many iterations in its operations and storage.
Bitcoin can be thought of as the first, very basic, version of this global community-run cloud, though it is primarily used only to store and move the Bitcoin digital currency.
Ethereum is the second and slightly more sophisticated version, which expanded the basic principles of Bitcoin to create a more general computing and storage platform, though it is a raw technology, which hasn’t achieved meaningful mainstream adoption.

1.1 WHY IS IT IMPORTANT TO PAY THE EXTRA COST TO SUPPORT DECENTRALIZATION?

Because some elements of value, for example bits representing digital currency ownership, personal identity, or asset notes, are very sensitive. While in the central system, the following players can change the value of any credits they come into direct contact with:
  1. The developer who controls the release or update of the application’s code
  2. The platform where the data is stored
  3. The servers which run the application’s code
Even if none of these players intend to operate with bad faith, the actions of governments, police forces and hackers can easily turn their hands against their users and censor, modify or steal the balances they are supposed to protect.
A typical user will trust a typical centralized application, despite its potential vulnerabilities, with everyday data and computation. Typically, only banks and governments are trusted sufficiently to maintain custody of the most sensitive information — balances of wealth and identity. But these entities are also subject to the very human forces of hubris, corruption and theft.
Especially after the 2008 global financial crisis, which demonstrated the fundamental problems of confidence in a highly indebted banking system. And governments around the
world apply significant capital controls to citizens during times of crisis. After these examples, it has become a truism that hackers now own most or all of your sensitive data.
These decentralized applications operate on a more complex infrastructure than today’s web but they have access to an instantaneous and global pool of currency, value and information that today’s web, where data is stored in the silos of individual corporations, cannot provide.

1.2 THE CHALLENGES OF CREATING A DECENTRALIZED CLOUD

A community-run system like this has very different challenges from centralized “cloud” infrastructure, which is running by a single entity or group of known entities. For example:
  1. It must be both inclusive to anyone and secure from manipulation or capture.
  2. Participants must be fairly compensated for their work while avoiding creating incentives for negligent or malicious behavior.
  3. It must be both game theoretically secure so good actors find the right equilibrium and resistant to manipulation so bad actors are actively prevented from negatively affecting the system.

2. NEAR

NEAR is a global community-run computing and storage cloud which is organized to be permissionless and which is economically incentivized to create a strong and decentralized data layer for the new web.
Essentially, it is a platform for running applications which have access to a shared — and secure — pool of money, identity and data which is owned by their users. More technically, it combines the features of partition-resistant networking, serverless compute and distributed storage into a new kind of platform.
NEAR is a community-managed, decentralized cloud storage and computing platform, designed to enable the open web in the future. It uses the same core technology for Bitcoin and Blockchain. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.
NEAR is a decentralized community-run cloud computing and storage platform, which is designed to enable the open web of the future. On this web, everything from new currencies to new applications to new industries can be created, opening the door to a brand new future.
NEAR is a scalable computing and storage platform with the potential to change how systems are designed, how applications are built and how the web itself works.
It is a complex technology allow developers and entrepreneurs to easily and sustainably build applications which reap the benefits of decentralization and participate in the Open Web while minimizing the associated costs for end users.
NEAR creates the only community-managed cloud that is strong enough to power the future of the open web, as NEAR is designed from the ground up to deliver intuitive experiences to
end users, expand capacity across millions of devices, and provide developers with new and sustainable business models for their applications.
The NEAR Platform uses a token — also called “NEAR”. This token allows the users of these cloud resources, regardless of where they are in the world, to fairly compensate the providers of the services and to ensure that these participants operate in good faith.

2.1 WHY NEAR?

Through focus, we find that Platforms based on blockchain technologies like Bitcoin and Ethereum have made great progress and enriched the world with thousands of innovative applications spanning from games to decentralized financing.
However, these original networks and none of the networks that followed were not able to bridge the gap towards mainstream adoption of the applications created above them and do not provide this type of standard that fully supports the web.
This is a result of two key factors:
  1. System design
  2. Organization design
System design is relevant because the technical architecture of other platforms creates substantial problems with both usability and scalability which have made adoption nearly impossible by any but the most technical innovators. End-users experience 97–99% dropoff rates when using applications and developers find the process of creating and maintaining their applications endlessly frustrating.
Fixing these problems requires substantial and complex changes to current protocol architectures, something which existing organizations haven’t proven capable of implementing. Instead, they create multi-year backlogs of specification design and implementation, which result in their technology falling further and further behind.
NEAR’s platform and organization are architected specifically to solve the above-mentioned problems. The technical design is fanatically focused on creating the world’s most usable and scalable decentralized platform so global-scale applications can achieve real adoption. The organization and governance structure are designed to rapidly ship and continuously evolve the protocol so it will never become obsolete.

2.1.1 Features, which address these problems:

1. USABILITY FIRST
The most important problem that needs to be addressed is how to allow developers to create useful applications that users can use easily and that will capture the sustainable value of these developers.
2. End-User Usability
Developers will only build applications, which their end users can actually use. NEAR’s “progressive security” model allows developers to create experiences for their users which more closely resemble familiar web experiences by delaying onboarding, removing the need for user to learn “blockchain” concepts and limiting the number of permission-asking interactions the user must have to use the application.
1. Simple Onboarding: NEAR allows developers to take actions on behalf of their users, which allows them to onboard users without requiring these users to provide a wallet or interact with tokens immediately upon reaching an application. Because accounts keep track of application-specific keys, user accounts can also be used for the kind of “Single Sign On” (SSO) functionality that users are familiar with from the traditional web (eg “Login with Facebook/Google/Github/etc”).
2. Easy Subscriptions: Contract-based accounts allow for easy creation of subscriptions and custom permissioning for particular applications.
3. Familiar Usage Styles: The NEAR economic model allows developers to pay for usage on behalf of their users in order to hide the costs of infrastructure in a way that is in line with familiar web usage paradigms.
4. Predictable Pricing: NEAR prices transactions on the platform in simple terms, which allow end-users to experience predictable pricing and less cognitive load when using the platform.

2.1.2 Design principles and development NEAR’s platform

1. Usability: Applications deployed to the platform should be seamless to use for end users and seamless to create for developers. Wherever possible, the underlying technology itself should fade to the background or be hidden completely from end users. Wherever possible, developers should use familiar languages and patterns during the development process. Basic applications should be intuitive and simple to create while applications that are more robust should still be secure.
2. Scalability: The platform should scale with no upper limit as long as there is economic justification for doing so in order to support enterprise-grade, globally used applications.
3. Sustainable Decentralization: The platform should encourage significant decentralization in both the short term and the long term in order to properly secure the value it hosts. The platform — and community — should be widely and permissionlessly inclusive and actively encourage decentralization and participation. To maintain sustainability, both technological and community governance mechanisms should allow for practical iteration while avoiding capture by any single parties in the end.
4. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose. Optimize for simplicity, pragmatism and ease of understanding above theoretical perfection.

2.2 HOW NEAR WORKS?

NEAR’s platform provides a community-operated cloud infrastructure for deploying and running decentralized applications. It combines the features of a decentralized database with others of a serverless compute platform. The token, which allows this platform to run also, enables applications built on top of it to interact with each other in new ways. Together, these features allow developers to create censorship resistant back-ends for applications that deal with high stakes data like money, identity, assets, and open-state components, which interact seamlessly with each other. These application back-ends and components are called “smart contracts,” though we will often refer to these all as simply “applications” here.
The infrastructure, which makes up this cloud, is created from a potentially infinite number of “nodes” run by individuals around the world who offer portions of their CPU and hard drive space — whether on their laptops or more professionally deployed servers. Developers write smart contracts and deploy them to this cloud as if they were deploying to a single server, which is a process that feels very similar to how applications are deployed to existing centralized clouds.
Once the developer has deployed an application, called a “smart contract”, and marked it unchangeable (“immutable”), the application will now run for as long as at least a handful of members of the NEAR community continue to exist. When end users interact with that deployed application, they will generally do so through a familiar web or mobile interface just like any one of a million apps today.
In the central cloud hosted by some companies today like: Amazon or Google, developers pay for their apps every month based on the amount of usage needed, for example based on the number of requests created by users visiting their webpages. The NEAR platform similarly requires that either users or developers provide compensation for their usage to the community operators of this infrastructure. Like today’s cloud infrastructure, NEAR prices usage based on easy to understand metrics that aren’t heavily influenced by factors like system congestion. Such factors make it very complicated for developers on alternative blockchain-based systems today.
In the centralized cloud, the controlling corporation makes decisions unilaterally. NEAR community-run cloud is decentralized so updates must ultimately be accepted by a sufficient quorum of the network participants. Updates about its future are generated from the community and subject to an inclusive governance process, which balances efficiency and security.
In order to ensure that the operators of nodes — who are anonymous and potentially even malicious — run the code with good behavior, they participate in a staking process called “Proof of Stake”. In this process, they willingly put a portion of value at risk as a sort of deposit, which they will forfeit if it is proven that they have operated improperly.

2.2.1 Elements of the NEAR’s Platform

The NEAR platform is made up of many separate elements. Some of these are native to the platform itself while others are used in conjunction with or on top of it.
1. THE NEAR TOKEN
NEAR token is the fundamental native asset of the NEAR ecosystem and its functionality is enabled for all accounts. Each token is a unique digital asset similar to Ether, which can be used to:
a) Pay the system for processing transactions and storing data.
b) Run a validating node as part of the network by participating in the staking process.
c) Help determine how network resources are allocated and where its future technical direction will go by participating in governance processes.
The NEAR token enables the economic coordination of all participants who operate the network plus it enables new behaviors among the applications which are built on top of that network.
2. OTHER DIGITAL ASSETS
The platform is designed to easily store unique digital assets, which may include, but aren’t limited to:
  • Other Tokens: Tokens bridged from other chains (“wrapped”) or created atop the NEAR Platform can be easily stored and moved using the underlying platform. This allows many kinds of tokens to be used atop the platform to pay for goods and services. “Stablecoins,” specific kinds of token which are designed to match the price of another asset (like the US Dollar), are particularly useful for transacting on the network in this way.
  • Unique Digital Assets: Similar to tokens, digital assets (sometimes called “Non Fungible Tokens” (NFTs) ranging from in-game collectibles to representations of real-world asset ownership can be stored and moved using the platform.
3. THE NEAR PLATFORM
The core platform, which is made up of the cloud of community-operated nodes, is the most basic piece of infrastructure provided. Developers can permissionlessly deploy smart contracts to this cloud and users can permissionlessly use the applications they power. Applications, which could range from consumer-facing games to digital currencies, can store their state (data) securely on the platform. This is conceptually similar to the Ethereum platform.
Operations that require an account, network use, or storage at the top of the platform require payment to the platform in the form of transaction fees that the platform then distributes to its community from the authentication contract. These operations could include creating new accounts, publishing new contracts, implementing code by contract and storing or modifying data by contract.
As long as the rules of the protocol are followed, any independent developer can write software, which interfaces with it (for example, by submitting transactions, creating accounts or even running a new node client) without asking for anyone’s permission first.
4. THE NEAR DEVELOPMENT SUITE
Set of tools and reference implementations created to facilitate its use by those developers and end users who prefer them. These tools include:
  • NEAR SDKs: NEAR platform supports (Rust and AssemblyScript) languages to write smart contracts. To provide a great experience for developers, NEAR has a full SDK, which includes standard data structures, examples and testing tools for these two languages.
  • Gitpod for NEAR: NEAR uses existing technology Gitpod to create zero time onboarding experience for developers. Gitpod provides an online “Integrated Development Environment” (IDE), which NEAR customized to allow developers to easily write, test and deploy smart contracts from a web browser.
  • NEAR Wallet: A wallet is a basic place for developers and end users to store the assets they need to use the network. NEAR Wallet is a reference implementation that is intended to work seamlessly with the progressive security model that lets application developers design more effective user experiences. It will eventually include built-in functionality to easily enable participation by holders in staking and governance processes on the network.
  • NEAR Explorer: To aid with both debugging of contracts and the understanding of network performance, Explorer presents information from the blockchain in an easily digestible web-based format.
  • NEAR Command Line Tools: The NEAR team provides a set of straightforward command line tools to allow developers to easily create, test and deploy applications from their local environments.
All of these tools are being created in an open-source manner so they can be modified or deployed by anyone.

3. ECONOMIC

Primarily economic forces drive the ecosystem, which makes up the NEAR platform. This economy creates the incentives, which allow participants permissionlessly organize to drive the platform’s key functions while creating strong disincentives for undesirable, irresponsible or malicious behavior. In order for the platform to be effective, these incentives need to exist both in the short term and in the long term.
The NEAR platform is a market among participants interested in two aspects:
  • On the supply side, certification contract operators and other core infrastructure must be motivated to provide these services that make up the community cloud.
  • On the demand side, platform developers and end-users who pay for their use need to be able to do so in a simple, clear and consistent way that helps them.
Further, economic forces can also be applied to support the ecosystem as a whole. They can be used at a micro level to create new business models by directly compensating the developers who create its most useful applications. They can also be used at a macro level by coordinating the efforts of a broader set of ecosystem participants who participate in everything from education to governance.

3.1 NEAR ECONOMY DESIGN PRINCIPLES

NEAR’s overall system design principles are used to inform its economic design according to the following interpretations:
1. Usability: End users and developers should have predictable and consistent pricing for their usage of the network. Users should never lose data forever.
2. Scalability: The platform should scale at economically justified thresholds.
3. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose.
4. Sustainable Decentralization: The barrier for participation in the platform as a validating node should be set as low as possible in order to bring a wide range of participants. Over time, their participation should not drive wealth and control into the hands of a small number. Individual transactions made far in the future must be at least as secure as those made today in order to safeguard the value they modify.

3.2 ECONOMIC OVERVIEW

The NEAR economy is optimized to provide developers and end users with the easiest possible experience while still providing proper incentives for network security and ecosystem development.
Summary of the key ideas that drive the system:
  • Thresholded Proof of Stake: Validating node operators provide scarce and valuable compute resources to the network. In order to ensure that the computations they run are correct, they are required to “stake” NEAR tokens, which guarantee their results. If these results are found to be inaccurate, the staker loses their tokens. This is a fundamental mechanism for securing the network. The threshold for participating in the system is set algorithmically at the lowest level possible to allow for the broadest possible participation of validating nodes in a given “epoch” period (½ of a day).
  • Epoch Rewards: Node operators are paid for their service a fixed percentage of total supply as a “security” fee of roughly 4.5% annualized. This rate targets sufficient participation levels among stakers in order to secure the network while balancing with other usage of NEAR token in the ecosystem.
  • Protocol treasury: In addition to validators, protocol treasury received a 0.5% of total supply annually to continuously re-invest into ecosystem development.
  • Transaction Costs: Usage of the network consumes two separate kinds of resources — instantaneous and long term. Instantaneous costs are generated by every transaction because each transaction requires the usage of both the network itself and some of its computation resources. These are priced together as a mostly-predictable cost per transaction, which is paid in NEAR tokens.
  • Storage Costs: Storage is a long term cost because storing data represents an ongoing burden to the nodes of the network. Storage costs are covered by maintaining minimum balance of NEAR tokens on the account or contract. This provides indirect mechanism of payment via inflation to validators for maintaining contract and account state on their nodes.
  • Inflation: Inflation is determined as combination of payouts to validators and protocol treasury minus the collected transaction fees and few other NEAR burning mechanics (like name auction). Overall the maximum inflation is 5%, which can go down over time as network gets more usage and more transactions fees are burned. It’s possible that inflation becomes negative (total supply decreases) if there is enough fees burned.
  • Scaling Thresholds: In a network, which scales its capacity relative to the amount of usage it receives, the thresholds, which drive the network to bring on additional capacity are economic in nature.
  • Security Thresholds: Some thresholds, which provide for good behavior among participants are set using economic incentives. For example, “Fishermen” (described separately).
Full Report
submitted by CoinEx_Institution to Coinex [link] [comments]

Bad Architecture, part 3, digging deeper...

Part 1 Part 2
I'm at $BigClient, which is taking a Citroen like approach to infrastructure and operations. "We recognize that the McPherson strut is simple, efficient, good enough for most use cases and accepted by everyone in the industry, but we shall do it with hydraulic fluid at high pressure. What could go wrong?"
Except $BigClient's far away from a competent Citroen shop. $BigClient's Citroen has gone through a few years of 'just keep it running on the cheap' upkeep without access to factory parts.
I've got an odd patching problem on a handful of servers. Systems are rolling back to insecure versions (2.0.2 ->1.4.6) and nobody knows why.
Or at least, nobody's talking.
I don't know what to do yet, so I decide to go and get lunch. I work out the possibilities.
  1. There's something wrong with our validation procedure- they're actually patched and we're reading the wrong thing.
  2. There's something or someone else downgrading these systems.
Number 1 requires more documentation, which $BC doesn't seem to want to show me. Number two might be hiding in logs, which are emailed to me on a regular basis.
I walk back to my cubicle, grab my laptop and a notebook and find a quiet corner to figure things out. I find one in a tiny conference room.
I read through my emails and search for any of the logs from the api servers.
I spend about ten minutes on Stack Exchange for the appropriate sed, awk, tee and cat munging to pare them down to what I want. Eventually I dump them all to Excel, because I am a bad person.
Some filtering and I can see what's going on. The system orchestration updates each server every other midnight. I see about three quarters of them download the 2.0.2 version as a part of the night's update.
Every two nights a (seemingly) random selection of servers updates. I scribble the order on the conference room whiteboard and stare at them for a few minutes.
Nothing in the orchestration system logs shows another process loading the older 1.4.6. version. But something is.
Nothing in the logs emailed to me obviously points to another process.
I take a walk to get a coffee and think. Nothing comes to me and I have to scour the kitchen for unflavored coffee. I walk back to my conference room to find an intern-like person.
me:"Hey, I apologize. I didn't know the room was reserved. I'll take my stuff."
Other person:"That's ok. Are you Rob?"
me:"Nope, sorry"
I take my stuff and make my way back to my cubicle.
A few minutes searching leads me to a shared root password for the servers stored in the password vault.
I login to one of the remaining servers running 2.0.2 and look at the running processes. Nothing obvious like "random updater".
I'm stumped.
I lean back and stare at nothing in particular trying to come up with some ideas.
Unfortunately, it's fairly packed and I'm next to a bullpen.
Voice 1:"So the Sky Caps put blotter in the vat without telling anyone"
Voice 2:"Hilton Honors kicks' Marriott Bonvoy's ass any day."
Voice 3:"No, I'll pick her up at 4"
The voices wash over me in some clip reel workplace sitcom haze. I'm not going to get anything done. I take a walk around the offices to get the lay of the land. It's a Hanna-Barbera cartoon of grey cubefarms, tan breakrooms, free coffee but no snacks. The only attempts at color are people's cubicles. Family pictures, shirtless men with fish, desk toys and action figures. It's like a mall- everything's pleasant, non threatening and in identically-sized stalls, with colorful (but bounded) individuality, all for commerce.
Then I find the Hot Topic meets Successories manifesting in a cubicle. There are two dorm-room sized posters of the gold Bitcoin-coin, along with framed inspirational quotes about success and perserverance set against pictures of Game Of Thrones characters and muscle-bound men in insignia-less camo. A new leather jacket with an embroidered skull is on the back of the chair. This person is either a hoot or insufferable.
I keep walking. I have a breakthrough.
Where are the API servers getting the older version to install? Maybe that'll lead me into the library. I'm not yet Adso, but perhaps I'm one of the other ,lesser scribes copying my book and scribbling fanciful drawings of the things I miss, like decent coffee and a cell-mate that doesn't snore.
I walk back to my cubicle. A different intern-shaped person is in the conference room, all alone.
I can't save them. Eventually they'll be standing in the corner of their cubicle looking away while the middle manager cleans out the rest of their team.
I'm in my seat. Some searching results in a few possible repositories. Some more searching finds me the one repo that still has v1.4.6 of this application.
Just to make sure, I compare a downloaded copy of v1.4.6 and the installed version of v 1.4.6 on one of the servers.
I search all the folders and files for the URL of the repo server and find it.
In the application itself. The server waits every two days and looks to the repo. If the installed version is not equal to v 1.4.6, it downloads v 1.4.6 from the server and installs it, then forces a restart.
This code is commented out (made non-executable) along with an actual comment:
/REMOVE BEFORE PRODUCTION
I quickly scan through the API servers to find one of the ones still running 2.0.2. I search for the term "REMOVE BEFORE PRODUCTION"
And there it is, in the application code.
Except it's not commented out.
In a text editor, I write up my findings, conclusion and a recommended fix- delete the upgrade code snippet, increment to 2.0.3, push it out using the orchestration tool and call it a day.
LC Chat won't let me attach my text file, so I breathlessly LC Chat my document, line by line at Vincent, the poor bastard tasked with closing audit finding 162, the mystery of the random rollback.
Vincent:...
Clearly, Vincent is choosing his congratulatory language carefully.
Vincent:"Can't apply the fix. The application is owned by Development. They're behind on other things, so they won't update the software until next quarter."
me:"It's about thirty lines of code we can comment out"
Vincent:"Can we say it's fixed for the audit since we know what the problem is?"
me:"No. We can patch it, or we could write up a remediation plan and get it on some schedule."
me:"But that's more paperwork than the actual fix."
Vincent:"But Ops isn't on good terms with Development."
me:"So they're not going to touch it any time soon."
Vincent:"Probably not"
me:You guys own that repo server, too"
Vincent:"I don't see how that's good for anything"
me:"We cut out the update code in 2.0.2 and call it 2.0.3. We name the file 1.4.6 and replace the existing 1.4.6 on the repo server. Either the app gets updated via your orchestration server or it updates itself. We're fixed in two days either way.
Vincent:"But policy requires that we get approval"
me:"There's an exception, if you have a superior in Operations to sign off, you can call it an emergency fix. Ask Trevor. He just needs to not tell anyone else. You submit the ticket and eventually the devs will get to it and fix the problem for good. Until then, you pass that part of the audit."
Vincent tells me he's going to talk to Trevor. I'm going to take a walk. Out of curiosity, I go back to the Hot Topic cubicle to get a look at its occupant.
The jacket is gone and the monitors are off. Mystery person has left for the day, I assume. I look at the large jars of nutritional supplements with macho names- Gorilla Rage, LumberJacked, Psycho Focus".
I notice the name-plate on the outside of the cubicle.
Oh, no.
Ian.
To Be Continued...
edit- made modifications to satisfy Internal Audit 8-)
submitted by lawtechie to talesfromtechsupport [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

RiB Newsletter #16 – Secure Enclaves à la Crab

For the last few months we’ve been following new zero-knowledge proof projects in Rust. This month, with Secret Network upgrading their mainnet with secret contracts, it seems like a good opportunity to explore Rust blockchains that are using a completely different privacy-preserving technology: secure enclaves.
Secure enclaves are processes whose environment is protected from inspection by other processes, even the kernel, by special hardware. This protection particularly involves the encryption of a process’s memory. Software that wants to compute in secret can put those computations inside a secure enclave and, if everything works as expected, neither a local user, nor the hosting provider, can snoop on the computations being performed. The most notable implementation of secure enclaves is Intel’s SGX (Secure Guard Extensions).
Secure enclaves are an attractive way to perform private computation primarily because they don’t impose any limitations on what can be computed — code that runs inside SGX is more-or-less just regular x86 code, just running inside a special environment. But depending on SGX for privacy does have some special risks: software that runs in an SGX enclave must be signed (if transitively) by Intel’s own cryptographic keys, which means that Intel must approve of any software running in SGX, that Intel can revoke permission to use SGX, and that there is a risk of the signing keys being compromised; and it’s not obvious that secure enclaves are actually secure, there have already been a number of attacks against SGX. Regardless, as of now, hardware enclaves provide security features that aren’t feasible any other way.
There are two prominent Rust blockchains relying on SGX:
Outside of the blockchain world there are some other Rust projects using SGX, the most notable being:
Whether it’s secure enclaves or zk-SNARKs, Rust blockchains are walking the bleeding edge of privacy tech.
In unrelated RiB news, we recently received two donations,
Thanks so much to our anonymous donors. We don’t often receive donations, so this was a nice surprise! We intend to put all monetary contributions to use funding events or new contributors, and we’ll let you know what we do with the funds when we spend them.

Project Spotlight

Each month we like to shine a light on a notable Rust blockchain project. This month that project is…
Aleo.
Aleo is a zero-knowledge blockchain, with its own zero-knowledge programming language, Leo.
We don’t have a lot to say about it, but we think it looks cool. We hope they blog more.

Interesting Things

News

Blog Posts

Papers

Projects


Read more: https://rustinblockchain.org/newsletters/2020-09-30-secure-enclaves-a-la-crab/
submitted by Aimeedeer to rust [link] [comments]

Building a Blockchain Architecture for Large Scale Applications Bitcoin and cryptocurrency mining explained - YouTube Introduction to Blockchain – III (Architecture) The Bitcoin and Blockchain Technology Explained - YouTube Lecture 11: Consensus in Bitcoin – I (The Basics)

So this is our attempt to assemble the main software layers of the Bitcoin architecture in the simplest manner possible, taking into account the expected direction of technological advancements in the Bitcoin sphere. Layer 1: Base layer. Running on top of TCP/IP, the base layer is comprised of the Bitcoin Core software. It is developed as an open source software that includes the consensus ... Bitcoin is far more than just another form of money. It is a crypto-currency and a peer-to-peer network that enables the secure transfer of a unique piece of digital property over the Internet, with no need for a trusted third party. This nascent technology has given rise to previously inconceivable business possibilities, such as instant, free, and secure money transfer, yet Bitcoin is still ... For the purposes of this article, we will mainly look to Bitcoin's blockchain when discussing aspects of blockchain architecture in general. However, the architectural components of transactions, blocks, mining, and consensus can be generalized and implemented in many different ways, leading to various possible blockchain projects. These projects usually involve creating other cryptocurrencies ... System Architecture. Bitcoind. External (p2p network): discovers and connects to other nodes; send and receive messages to and from other nodes; Internal: exposes RPC to pool software and to mAPI; optional REST Interface can be enabled; Pool Software. External (stratum protocol): exposed API for ASIC Miners to connect and start mining block headers; send jobs to ASIC Miners; receive valid ... Bitcoin; Ethereum; Altcoins; Trading; Mining; Exchanges; Regulation; TOP. software-architecture ACT, Blockchain, blockchain-development, blockchain-technology, good-company, latest-tech-stories, software-architecture, typescript, web-development “Explorons ARK Core v3: Outillage [Part 6]” 17/05/2020 - Commentaires fermés sur Explorons ARK Core v3: Outillage [Part 6] @ark.ioARK.io ...

[index] [42433] [4372] [24261] [46163] [46559] [50946] [483] [3375] [14962] [7639]

Building a Blockchain Architecture for Large Scale Applications

bitcoin mining softwares - 10 - bitcoin mining software 2019. microcryptosoft - 2 bitcoin mining softwares. top free bitcoin mining software in 2019. bitcoin... Adrian Sutton's talk at the Ethereum Engineering Group meet-up discusses the architecture of Teku Etherum 2 Client. This software supports Ethereum 2 Beacon Chain. Slides are available here: https ... Bitcoin Basics – III - Duration: 30:16. ... Blockchain Technology Architecture - Duration: 7:01. Telusko 28,798 views. 7:01. Ray Dalio on the Economy, Pandemic, China's Rise: Full Interview ... easyminer is a bitcoin mining software optimized for x86 x86-64 and arm architectures for bitcoin and litecoin clients. bitcoin mining software mac. 🤑🏆 best bitcoin mining software of 2019 ... A block chain is a transaction database shared by all nodes participating in a system based on the Bitcoin protocol. A full copy of a currency's block chain ...

#