Bitcoin Explained: 3 Easy Analogies for Understanding ...

Bitcoin and blockchain easily explained by Richard Heart

Bitcoin and blockchain easily explained by Richard Heart submitted by vlarocca to Bitcoin [link] [comments]

Bitcoin and blockchain easily explained by Richard Heart

Bitcoin and blockchain easily explained by Richard Heart submitted by jreddit83 to CryptoCurrency [link] [comments]

Richard Heart - Bitcoin and blockchain easily explained by Richard Heart

Richard Heart - Bitcoin and blockchain easily explained by Richard Heart submitted by Yanlii to cryptovideos [link] [comments]

Bitcoin and blockchain easily explained by Richard Heart

Bitcoin and blockchain easily explained by Richard Heart submitted by ABitcoinAllBot to BitcoinAll [link] [comments]

Bitcoin and blockchain easily explained by Richard Heart

Bitcoin and blockchain easily explained by Richard Heart submitted by gummibearslayer to Meerkat_Token [link] [comments]

Comparison between Avalanche, Cosmos and Polkadot

Comparison between Avalanche, Cosmos and Polkadot
Reposting after was mistakenly removed by mods (since resolved - Thanks)
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/e8s7dj3ivpq51.png?width=428&format=png&auto=webp&s=5d0463462702637118c7527ebf96e91f4a80b290

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Cosmos on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
(There's a youtube video with a quick video overview of Polkadot on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
(There's a youtube video with a quick video overview of Avalanche on the medium article - https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b)

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/2o0brllyvpq51.png?width=1000&format=png&auto=webp&s=8f62bb696ecaafcf6184da005d5fe0129d504518

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/ckfamee0wpq51.png?width=1000&format=png&auto=webp&s=c4355f145d821fabf7785e238dbc96a5f5ce2846

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/kzup5x42wpq51.png?width=1000&format=png&auto=webp&s=320eb4c25dc4fc0f443a7a2f7ff09567871648cd

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/pbgyk3o3wpq51.png?width=1000&format=png&auto=webp&s=61c18e12932a250f5633c40633810d0f64520575

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/4zpi6s85wpq51.png?width=1000&format=png&auto=webp&s=e91ade1a86a5d50f4976f3b23a46e9287b08e373

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/li5jy6u6wpq51.png?width=1000&format=png&auto=webp&s=e2a95f1f88e5efbcf9e23c789ae0f002c8eb73fc

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/ai0bkbq8wpq51.png?width=1000&format=png&auto=webp&s=3e85ee6a3c4670f388ccea00b0c906c3fb51e415

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/mels7myawpq51.png?width=1000&format=png&auto=webp&s=df9782e2c0a4c26b61e462746256bdf83b1fb906
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/dbb99egcwpq51.png?width=1388&format=png&auto=webp&s=aeb03127dc0dc74d0507328e899db1c7d7fc2879
For more information see the articles below (each with additional sources at the bottom of their articles)
Avalanche, a Revolutionary Consensus Engine and Platform. A Game Changer for Blockchain
Avalanche Consensus, The Biggest Breakthrough since Nakamoto
Cosmos — An Early In-Depth Analysis — Part One
Cosmos — An Early In-Depth Analysis — Part Two
Cosmos Hub ATOM Token and the commonly misunderstood staking tokens — Part Three
Polkadot — An Early In-Depth Analysis — Part One — Overview and Benefits
Polkadot — An Early In-Depth Analysis — Part Two — How Consensus Works
Polkadot — An Early In-Depth Analysis — Part Three — Limitations and Issues
submitted by xSeq22x to CryptoCurrency [link] [comments]

xBTC MINT Protocol is going live in few hours!!!

🔴What is xBTC?
One Token access to:
xBTC gives users one token access to every single digital asset on earth, pegged against Bitcoin dominance. We call this a “Dominance Hedge.” As the inferior and sluggish Bitcoin loses its dominance, xBTC holders will benefit. DeFi, Social Networks, Gaming, Smart Contracts – all blockchains are all represented by xBTC. With a few clicks of the mouse, users benefit from access to hundreds of digital assets. This is: diversification, better returns, and innovation - this is xBTC.

🔴What is xBTC MINT Protocol
xBTC mint protocol incentivizes liquidity providers who stake their liquidity pool tokens in the Mint by providing them with xBTC tokens to compensate for the impermanent loss. It is similar to AMPL's Geyser.

🔴 Liquidity Incentives Explained
Users can only deposit xBTC/ETH Liquidity pool tokens into the Mint Version 1. Our timeline for this changing (i.e. adding more pools) will be reactive to the market but we will reassess in 3 months at the latest, however the xBTC/ETH incentives will run for 7 months regardless of other pools opening.

🔴 What can I deposit? xBTC/ETH Uniswap V2 Liquidity Tokens

🔴How are rewards calculated?
This is highly variable, you will receive rewards based on two factors:
  1. How much liquidity you add, the more you add the higher your rewards
  2. How long you stake your liquidity tokens, the longer you stake the higher your rewards
a. The amount of rewards increases linearly from day one, on day one you get 1x rewards, on day 180 you get 3x rewards, pulling out before 180 days would net you somewhere between 1x-3x rewards. After day 180 you continue earning 3x rewards everyday until you unstake.

🔴How many rewards can I earn?
We will aim for a competitive APY based solely on the xBTC rewards, however the results could easily be much higher than the competition depending on how many people stake. On top of this you will be earning fees from the liquidity pool tokens, also any market cap appreciation of Ethereum or xBTC will be realized on your LP tokens (minus impermanent loss). Lastly we will have a 6 month bonus. Our reward structure will look approximately like this: miro.medium.com/max/576/1*Dl8trOggg3k07T5_hxJ90g.jpeg

🔴What is the 6 month bonus?
There will be a separate reward pool for those who support xBTC long term, anyone who keeps their tokens staked for 6+ months (through the end of Mint Version 1) will share the 40,000 xBTC pool. We see this being only a select few who truly share the long term vision of xBTC and we see it being highly rewarding, however that completely depends on how many people stake for a full 6 months. This also means you must stake in the first 4 weeks to be eligible for the 6 month bonus.

🔴Why is the pot split 4 months and 3 months?
We have done this to be responsive to the market. Uniswap V3 may come sooner than later, if this happens we will likely have to reassess and adjust the Mint. We don’t want our users to be stuck providing liquidity on Uniswap V2 if it would be advantageous to switch to V3. With this unknown we wanted to split the terms up, however you don’t have to do anything at 4 months, your tokens will automatically start farming the next 3 month reward pool and you will maintain your bonus (1x-3x depending on how long you have staked).

🔴xBTC and the Mint
The Mint is meant to align our community’s incentives with the project’s incentives. It is also meant to reward our users for supporting our ecosystem. This is a huge step forward for xBTC and acts as an essential part of our long term growth and sustainability. We look forward to continuing to evolve and improve the Mint the build out our ecosystem more broadly and effectively. Thank you to all of our early supports and believers, we are just getting started, onwards and upwards.
Uniswap: https://app.uniswap.org/#/swap?inputCurrency=0xecbf566944250dde88322581024e611419715f7a
Website: xbtc.fi
Telegram: xBTC_Official
Twitter: twitter.com/XBTC_Official
Mint Protocol Launch Countdown: https://www.timeanddate.com/countdown/launch?iso=20201013T1730&p0=256&msg=Get+Ready+To+Mint+In
submitted by TranquiliZer93 to CryptoMoonShots [link] [comments]

Digital/Crypto Currency Movement and Plays

Intro:
This post will have a bit of everything. My general thoughts on the sector and its future, a bit of brief DD, and my gameplan.! I would not advise making any financial decisions based on my comments without doing your own research.
Mods, in addition to the penny stocks, I also discuss an ETF and two funds that I've invested in that are not penny stocks. I felt that they were worth detailing though to explain my approach. I hope that's kosher.
I'm still getting familiar with the sector so I'd love to get some feedback if anyone more familiar can lend some insight. If anyone is aware of some other stocks similar to the ones I selected below that I may have overlooked or if you think I was wrong to toss out any that I mentioned, definitely let me know!
My thesis is this:
Cryptocurrencies have had some runs in the past but it appears to me that they are gaining traction as a financial instrument on Wall Street. Investments by big companies such as OSTK and SQ, regulatory discussions, and the emergence of blockchain are a few catalysts. This and the general sentiment in the big financial I'm seeing leads me to believe that this sector could see some big money pouring in imminently. Several sectors this year have seen their valuations multiply by 5-10 fold in the course of months. Vaccine biotechs, then EVs, and most recently solar to name a few. It seems like this could easily be next. I could see this move being something akin to the EV movement with a strong initial short term movement and with continued momentum for months or longer.
My stock selection strategy is this:
Some penny stocks like MARA, RIOT, BTBT, EQOS, EBON, and HVBTF have had big runs recently but when you dig into their financials, they are either abysmal or not easily available (i.e. on Seeking Alpha or the OTC site depending on their exchange). As more legitimate companies start to invest money, the low quality pump and dumps will lose traction and more legit companies with a good future will emerge. I eventually came across CAN and BRPHF(OTC), the brief highlights of which are as follows. Both of these focus on supplying the actual infrastructure components such as bitcoin miners and ancillary equipment. This means that regardless of how financially healthy any sketchy companies doing the mining are, as interest picks up, these guys are making money. Both have implemented share buyback programs recently. While they may have some debt or be loss-making currently (as many legit growth companies are), they have healthy balance sheets and optimism from management. CAN is coming off of recent lows which it has held well, so downside is relatively low right now. BRPHF is at recent highs but momentum has been good in getting there and I believe it has lots of room to grow.
My gameplan is this:
I invested in both companies above this morning when both were around 5-10% change for the day. They both went to 15-20% later in the day and settled in to close around 15%. I'm feeling good about them so far but will be keeping a close eye on them.
I also wanted additional exposure to the sector with a more direct reflection of its movement as a whole. To achieve this I took the following three additional positions, each a bit larger than the two above. First was the blockchain ETF BLOK. There are other blockchain ETFs out there, but I believe this has the most potential moving forward and is the most pure play of them.
The other two are pseudo trades of bitcoin and ethereum itself. Right now to trade the currencies without taking any risks associated with owning a cryptocurrency is via a set of funds from Grayscale for various cryptocurrencies. The funds are essentially a trust with a fixed amount of the cryptocurrency, and shares of the funds are traded like stocks. As such, the share price is not a 1:1 correlation with the currency's exchange rate since speculation and the effects of supply and demand factor in. As a matter of fact, there are often large differences in how the share price and exchange rate behave. Because of this, these funds also trade at a premium. For example, you could actually buy significantly more Ethereum directly for a given amount of dollars than the amount of ethereum represented by the amount of shares you could buy with the same amount of dollars. So if people start deciding to buy the cryptocurrency directly, the share price could take a significant hit. I'm not too worried about that in the near term, but I will be monitoring that situation closely. I may actually switch to that strategy myself in the medium term if things go well.
The two funds that I took positions in are ETCG for ethereum and GBTC for bitcoin. GBTC has been around for a while and has stabilized so that its price has a pretty good correlation to the bitcoin exchange rate. It finished today up about 7% compared to about 6% for the bitcoin exchange rate. ETCG is pretty new and is much more effected by supply and demand. For reference, it finished today up 25%. Right now its shares are coming off all time lows but as recently as July it was trading at 2-3 times the current value, and at one point in 2019, it was almost 10x. The risk is higher with this one but the upside is massive.
In summary:
I believe that digital currencies will see great things in the near future and have created a somewhat diversified strategy to give myself exposure, including the two penny stocks listed above.
submitted by logan72390 to pennystocks [link] [comments]

Help recovering from old wallet.dat for an old friend.


Hey all,
I've been in the Bitcoin space since early 2012.
I have a situation that I would love to get some assistance with, I will explain the situation momentarily. Please do not message me and ask me for the wallet.dat file it's not going to happen.
TL;DR
I have an old wallet.dat file from late 2012 or early 2013 from a coin I sold to a friend. Tried to recover the coins in 2018 and failed, later found out that someone had access to the computer and could have easily stole them. Would the current Bitcoin Core be able to read an old wallet.dat file, and is there any way to easily view the balance of a 2012 wallet.dat file without having to load the entire blockchain?
In the early days of Bitcoin as many of you OG's know, the only option to securely store your coins was to use the default Bitcoin wallet in a wallet.dat file. A friend of mine was really wanted to invest in Bitcoin but didn't know how, so I sold one to him because I didn't want him to get screwed. I installed Bitcoin QT on their home laptop, had him write down the password on a piece of paper and had him put a backup of the wallet.dat file onto a USB.
Fast forward to when the price went to $20k plus, he calls me up super excited and said he wanted to sell his coin because he could use the money and I encouraged it because from my prior experience I knew the momentum was unsustainable and I had sold a few coins of my own.
Anyway, I go over to his house and we huddle around his computer. He tells me that he upgraded the hard drive in his computer and gave me his old one and I went back to my house to get an external hard drive reader. I came back, booted up his old drive and remembered that we would have to let it sync up in order to get the coins out, and on his internet that wasn't going to happen anytime soon. He gave me the hard drive and I went home and left on Bitcoin QT overnight and in the morning I was shocked to see that there were no transactions on the wallet. Quick note, he had the wallet password in a file on his documents titled "Bitcoin Wallet Password.txt". smh.
I started to panic, and I realized how bad this looked on me. I called him and told him that there were no coins on there and asked if he had his USB stick and he told me he had lost it years ago. I frantically looked through all of my old wallet files to find any transaction that could link to his address, to show that his coins were still in there. After a while I realized I had sent the coins from the now defunct btc-e.com, and had no way to check up on the coins.
I did everything in my ability to try to recover lost data from the hard drive to no avail. I asked him if anyone else has had access to his computer, and then asked him how he replaced his hard drive because I know him well enough to know he wouldn't pull apart a laptop to replace the hard drive. He told me he took it to a shop to have it replaced a few months earlier. I suspect that I'm either trying to view the wallet incorrectly or whoever replaced his hard drive snooped on his hard drive, stole the coins and replaced the wallet.dat file and generated a new one. I have to admit, I was relieved a little bit to have an explanation to coins not being there but I could imagine he thinks I may have had something to do with it. I made a few more attempts over the years whenever I was reminded of the situation to no avail.
We kind of fell out after that and haven't spoken in a while. Recently, I saw a post on his Facebook that his wife is pregnant they are having a baby, and that's why I'm here. I would love nothing more than to be able to message him and let him know that I have 11 grand waiting for him, because I'm certain the money would mean the world to him during such a stressful time.
Any help or insights would be incredibly helpful and appreciated.
submitted by Good-Exercise to Bitcoin [link] [comments]

Zano Newcomers Introduction/FAQ - please read!

Welcome to the Zano Sticky Introduction/FAQ!

https://preview.redd.it/al1gy9t9v9q51.png?width=424&format=png&auto=webp&s=b29a60402d30576a4fd95f592b392fae202026ca
Hopefully any questions you have will be answered by the resources below, but if you have additional questions feel free to ask them in the comments. If you're quite technically-minded, the Zano whitepaper gives a thorough overview of Zano's design and its main features.
So, what is Zano? In brief, Zano is a project started by the original developers of CryptoNote. Coins with market caps totalling well over a billion dollars (Monero, Haven, Loki and countless others) run upon the codebase they created. Zano is a continuation of their efforts to create the "perfect money", and brings a wealth of enhancements to their original CryptoNote code.
Development happens at a lightning pace, as the Github activity shows, but Zano is still very much a work-in-progress. Let's cut right to it:
Here's why you should pay attention to Zano over the next 12-18 months. Quoting from a recent update:
Anton Sokolov has recently joined the Zano team. ... For the last months Anton has been working on theoretical work dedicated to log-size ring signatures. These signatures theoretically allows for a logarithmic relationship between the number of decoys and the size/performance of transactions. This means that we can set mixins at a level from up to 1000, keeping the reasonable size and processing speed of transactions. This will take Zano’s privacy to a whole new level, and we believe this technology will turn out to be groundbreaking!
If successful, this scheme will make Zano the most private, powerful and performant CryptoNote implementation on the planet. Bar none. A quantum leap in privacy with a minimal increase in resource usage. And if there's one team capable of pulling it off, it's this one.

What else makes Zano special?

You mean aside from having "the Godfather of CryptoNote" as the project lead? ;) Actually, the calibre of the developers/researchers at Zano probably is the project's single greatest strength. Drawing on years of experience, they've made careful design choices, optimizing performance with an asynchronous core architecture, and flexibility and extensibility with a modular code structure. This means that the developers are able to build and iterate fast, refining features and adding new ones at a rate that makes bigger and better-funded teams look sluggish at best.
Zano also has some unique features that set it apart from similar projects:
Privacy Firstly, if you're familiar with CryptoNote you won't be surprised that Zano transactions are private. The perfect money is fungible, and therefore must be untraceable. Bitcoin, for the most part, does little to hide your transaction data from unscrupulous observers. With Zano, privacy is the default.
The untraceability and unlinkability of Zano transactions come from its use of ring signatures and stealth addresses. What this means is that no outside observer is able to tell if two transactions were sent to the same address, and for each transaction there is a set of possible senders that make it impossible to determine who the real sender is.
Hybrid PoW-PoS consensus mechanism Zano achieves an optimal level of security by utilizing both Proof of Work and Proof of Stake for consensus. By combining the two systems, it mitigates their individual vulnerabilities (see 51% attack and "nothing at stake" problem). For an attack on Zano to have even a remote chance of success the attacker would have to obtain not only a majority of hashing power, but also a majority of the coins involved in staking. The system and its design considerations are discussed at length in the whitepaper.
Aliases Here's a stealth address: ZxDdULdxC7NRFYhCGdxkcTZoEGQoqvbZqcDHj5a7Gad8Y8wZKAGZZmVCUf9AvSPNMK68L8r8JfAfxP4z1GcFQVCS2Jb9wVzoe. I have a hard enough time remembering my phone number. Fortunately, Zano has an alias system that lets you register an address to a human-readable name. (@orsonj if you want to anonymously buy me a coffee)
Multisig
Multisignature (multisig) refers to requiring multiple keys to authorize a Zano transaction. It has a number of applications, such as dividing up responsibility for a single Zano wallet among multiple parties, or creating backups where loss of a single seed doesn't lead to loss of the wallet.
Multisig and escrow are key components of the planned Decentralized Marketplace (see below), so consideration was given to each of them from the design stages. Thus Zano's multisig, rather than being tagged on at the wallet-level as an afterthought, is part of its its core architecture being incorporated at the protocol level. This base-layer integration means months won't be spent in the future on complicated refactoring efforts in order to integrate multisig into a codebase that wasn't designed for it. Plus, it makes it far easier for third-party developers to include multisig (implemented correctly) in any Zano wallets and applications they create in the future.
(Double Deposit MAD) Escrow
With Zano's escrow service you can create fully customizable p2p contracts that are designed to, once signed by participants, enforce adherence to their conditions in such a way that no trusted third-party escrow agent is required.
https://preview.redd.it/jp4oghyhv9q51.png?width=1762&format=png&auto=webp&s=12a1e76f76f902ed328886283050e416db3838a5
The Particl project, aside from a couple of minor differences, uses an escrow scheme that works the same way, so I've borrowed the term they coined ("Double Deposit MAD Escrow") as I think it describes the scheme perfectly. The system requires participants to make additional deposits, which they will forfeit if there is any attempt to act in a way that breaches the terms of the contract. Full details can be found in the Escrow section of the whitepaper.
The usefulness of multisig and the escrow system may not seem obvious at first, but as mentioned before they'll form the backbone of Zano's Decentralized Marketplace service (described in the next section).

What does the future hold for Zano?

The planned upgrade to Zano's privacy, mentioned at the start, is obviously one of the most exciting things the team is working on, but it's not the only thing.
Zano Roadmap
Decentralized Marketplace
From the beginning, the Zano team's goal has been to create the perfect money. And money can't just be some vehicle for speculative investment, money must be used. To that end, the team have created a set of tools to make it as simple as possible for Zano to be integrated into eCommerce platforms. Zano's API’s and plugins are easy to use, allowing even those with very little coding experience to use them in their E-commerce-related ventures. The culmination of this effort will be a full Decentralized Anonymous Marketplace built on top of the Zano blockchain. Rather than being accessed via the wallet, it will act more as a service - Marketplace as a Service (MAAS) - for anyone who wishes to use it. The inclusion of a simple "snippet" of code into a website is all that's needed to become part a global decentralized, trustless and private E-commerce network.
Atomic Swaps
Just as Zano's marketplace will allow you to transact without needing to trust your counterparty, atomic swaps will let you to easily convert between Zano and other cyryptocurrencies without having to trust a third-party service such as a centralized exchange. On top of that, it will also lead to the way to Zano's inclusion in the many decentralized exchange (DEX) services that have emerged in recent years.

Where can I buy Zano?

Zano's currently listed on the following exchanges:
https://coinmarketcap.com/currencies/zano/markets/
It goes without saying, neither I nor the Zano team work for any of the exchanges or can vouch for their reliability. Use at your own risk and never leave coins on a centralized exchange for longer than necessary. Your keys, your coins!
If you have any old graphics cards lying around(both AMD & NVIDIA), then Zano is also mineable through its unique ProgPowZ algorithm. Here's a guide on how to get started.
Once you have some Zano, you can safely store it in one of the desktop or mobile wallets (available for all major platforms).

How can I support Zano?

Zano has no marketing department, which is why this post has been written by some guy and not the "Chief Growth Engineer @ Zano Enterprises". The hard part is already done: there's a team of world class developers and researchers gathered here. But, at least at the current prices, the team's funds are enough to cover the cost of development and little more. So the job of publicizing the project falls to the community. If you have any experience in community building/growth hacking at another cryptocurrency or open source project, or if you're a Zano holder who would like to ensure the project's long-term success by helping to spread the word, then send me a pm. We need to get organized.
Researchers and developers are also very welcome. Working at the cutting edge of mathematics and cryptography means Zano provides challenging and rewarding work for anyone in those fields. Please contact the project's Community Manager u/Jed_T if you're interested in joining the team.
Social Links:
Twitter
Discord Server
Telegram Group
Medium blog
I'll do my best to keep this post accurate and up to date. Message me please with any suggested improvements and leave any questions you have below.
Welcome to the Zano community and the new decentralized private economy!
submitted by OrsonJ to Zano [link] [comments]

[ CryptoCurrency ] Comparison between Avalanche, Cosmos and Polkadot

[ 🔴 DELETED 🔴 ] Topic originally posted in CryptoCurrency by xSeq22x [link]
A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important.
For better formatting see https://medium.com/ava-hub/comparison-between-avalanche-cosmos-and-polkadot-a2a98f46c03b
https://preview.redd.it/lg16iwk2dhq51.png?width=428&format=png&auto=webp&s=6c899ee69800dd6c5e2900d8fa83de7a43c57086

Overview

Cosmos

Cosmos is a heterogeneous network of many independent parallel blockchains, each powered by classical BFT consensus algorithms like Tendermint. Developers can easily build custom application specific blockchains, called Zones, through the Cosmos SDK framework. These Zones connect to Hubs, which are specifically designed to connect zones together.
The vision of Cosmos is to have thousands of Zones and Hubs that are Interoperable through the Inter-Blockchain Communication Protocol (IBC). Cosmos can also connect to other systems through peg zones, which are specifically designed zones that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Cosmos does not use Sharding with each Zone and Hub being sovereign with their own validator set.
For a more in-depth look at Cosmos and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/Eb8xkDi_PUg

Polkadot

Polkadot is a heterogeneous blockchain protocol that connects multiple specialised blockchains into one unified network. It achieves scalability through a sharding infrastructure with multiple blockchains running in parallel, called parachains, that connect to a central chain called the Relay Chain. Developers can easily build custom application specific parachains through the Substrate development framework.
The relay chain validates the state transition of connected parachains, providing shared state across the entire ecosystem. If the Relay Chain must revert for any reason, then all of the parachains would also revert. This is to ensure that the validity of the entire system can persist, and no individual part is corruptible. The shared state makes it so that the trust assumptions when using parachains are only those of the Relay Chain validator set, and no other. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. The hope is to have 100 parachains connect to the relay chain.
For a more in-depth look at Polkadot and provide more reference to points made in this article, please see my three part series — Part One, Part Two, Part Three
https://youtu.be/_-k0xkooSlA

Avalanche

Avalanche is a platform of platforms, ultimately consisting of thousands of subnets to form a heterogeneous interoperable network of many blockchains, that takes advantage of the revolutionary Avalanche Consensus protocols to provide a secure, globally distributed, interoperable and trustless framework offering unprecedented decentralisation whilst being able to comply with regulatory requirements.
Avalanche allows anyone to create their own tailor-made application specific blockchains, supporting multiple custom virtual machines such as EVM and WASM and written in popular languages like Go (with others coming in the future) rather than lightly used, poorly-understood languages like Solidity. This virtual machine can then be deployed on a custom blockchain network, called a subnet, which consist of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance.
Avalanche was built with serving financial markets in mind. It has native support for easily creating and trading digital smart assets with complex custom rule sets that define how the asset is handled and traded to ensure regulatory compliance can be met. Interoperability is enabled between blockchains within a subnet as well as between subnets. Like Cosmos and Polkadot, Avalanche is also able to connect to other systems through bridges, through custom virtual machines made to interact with another ecosystem such as Ethereum and Bitcoin.
For a more in-depth look at Avalanche and provide more reference to points made in this article, please see here and here
https://youtu.be/mWBzFmzzBAg

Comparison between Cosmos, Polkadot and Avalanche

A frequent question I see being asked is how Cosmos, Polkadot and Avalanche compare? Whilst there are similarities there are also a lot of differences. This article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions. I want to stress that it’s not a case of one platform being the killer of all other platforms, far from it. There won’t be one platform to rule them all, and too often the tribalism has plagued this space. Blockchains are going to completely revolutionise most industries and have a profound effect on the world we know today. It’s still very early in this space with most adoption limited to speculation and trading mainly due to the limitations of Blockchain and current iteration of Ethereum, which all three of these platforms hope to address. For those who just want a quick summary see the image at the bottom of the article. With that said let’s have a look

Scalability

Cosmos

Each Zone and Hub in Cosmos is capable of up to around 1000 transactions per second with bandwidth being the bottleneck in consensus. Cosmos aims to have thousands of Zones and Hubs all connected through IBC. There is no limit on the number of Zones / Hubs that can be created

Polkadot

Parachains in Polkadot are also capable of up to around 1500 transactions per second. A portion of the parachain slots on the Relay Chain will be designated as part of the parathread pool, the performance of a parachain is split between many parathreads offering lower performance and compete amongst themselves in a per-block auction to have their transactions included in the next relay chain block. The number of parachains is limited by the number of validators on the relay chain, they hope to be able to achieve 100 parachains.

Avalanche

Avalanche is capable of around 4500 transactions per second per subnet, this is based on modest hardware requirements to ensure maximum decentralisation of just 2 CPU cores and 4 GB of Memory and with a validator size of over 2,000 nodes. Performance is CPU-bound and if higher performance is required then more specialised subnets can be created with higher minimum requirements to be able to achieve 10,000 tps+ in a subnet. Avalanche aims to have thousands of subnets (each with multiple virtual machines / blockchains) all interoperable with each other. There is no limit on the number of Subnets that can be created.

Results

All three platforms offer vastly superior performance to the likes of Bitcoin and Ethereum 1.0. Avalanche with its higher transactions per second, no limit on the number of subnets / blockchains that can be created and the consensus can scale to potentially millions of validators all participating in consensus scores ✅✅✅. Polkadot claims to offer more tps than cosmos, but is limited to the number of parachains (around 100) whereas with Cosmos there is no limit on the number of hubs / zones that can be created. Cosmos is limited to a fairly small validator size of around 200 before performance degrades whereas Polkadot hopes to be able to reach 1000 validators in the relay chain (albeit only a small number of validators are assigned to each parachain). Thus Cosmos and Polkadot scores ✅✅
https://preview.redd.it/ththwq5qdhq51.png?width=1000&format=png&auto=webp&s=92f75152c90d984911db88ed174ebf3a147ca70d

Decentralisation

Cosmos

Tendermint consensus is limited to around 200 validators before performance starts to degrade. Whilst there is the Cosmos Hub it is one of many hubs in the network and there is no central hub or limit on the number of zones / hubs that can be created.

Polkadot

Polkadot has 1000 validators in the relay chain and these are split up into a small number that validate each parachain (minimum of 14). The relay chain is a central point of failure as all parachains connect to it and the number of parachains is limited depending on the number of validators (they hope to achieve 100 parachains). Due to the limited number of parachain slots available, significant sums of DOT will need to be purchased to win an auction to lease the slot for up to 24 months at a time. Thus likely to lead to only those with enough funds to secure a parachain slot. Parathreads are however an alternative for those that require less and more varied performance for those that can’t secure a parachain slot.

Avalanche

Avalanche consensus scan scale to tens of thousands of validators, even potentially millions of validators all participating in consensus through repeated sub-sampling. The more validators, the faster the network becomes as the load is split between them. There are modest hardware requirements so anyone can run a node and there is no limit on the number of subnets / virtual machines that can be created.

Results

Avalanche offers unparalleled decentralisation using its revolutionary consensus protocols that can scale to millions of validators all participating in consensus at the same time. There is no limit to the number of subnets and virtual machines that can be created, and they can be created by anyone for a small fee, it scores ✅✅✅. Cosmos is limited to 200 validators but no limit on the number of zones / hubs that can be created, which anyone can create and scores ✅✅. Polkadot hopes to accommodate 1000 validators in the relay chain (albeit these are split amongst each of the parachains). The number of parachains is limited and maybe cost prohibitive for many and the relay chain is a ultimately a single point of failure. Whilst definitely not saying it’s centralised and it is more decentralised than many others, just in comparison between the three, it scores ✅
https://preview.redd.it/lv2h7g9sdhq51.png?width=1000&format=png&auto=webp&s=56eada6e8c72dbb4406d7c5377ad15608bcc730e

Latency

Cosmos

Tendermint consensus used in Cosmos reaches finality within 6 seconds. Cosmos consists of many Zones and Hubs that connect to each other. Communication between 2 zones could pass through many hubs along the way, thus also can contribute to latency times depending on the path taken as explained in part two of the articles on Cosmos. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Polkadot

Polkadot provides a Hybrid consensus protocol consisting of Block producing protocol, BABE, and then a finality gadget called GRANDPA that works to agree on a chain, out of many possible forks, by following some simpler fork choice rule. Rather than voting on every block, instead it reaches agreements on chains. As soon as more than 2/3 of validators attest to a chain containing a certain block, all blocks leading up to that one are finalized at once.
If an invalid block is detected after it has been finalised then the relay chain would need to be reverted along with every parachain. This is particularly important when connecting to external blockchains as those don’t share the state of the relay chain and thus can’t be rolled back. The longer the time period, the more secure the network is, as there is more time for additional checks to be performed and reported but at the expense of finality. Finality is reached within 60 seconds between parachains but for external ecosystems like Ethereum their state obviously can’t be rolled back like a parachain and so finality will need to be much longer (60 minutes was suggested in the whitepaper) and discussed in more detail in part three

Avalanche

Avalanche consensus achieves finality within 3 seconds, with most happening sub 1 second, immutable and completely irreversible. Any subnet can connect directly to another without having to go through multiple hops and any VM can talk to another VM within the same subnet as well as external subnets. It doesn’t need to wait for an extended period of time with risk of rollbacks.

Results

With regards to performance far too much emphasis is just put on tps as a metric, the other equally important metric, if not more important with regards to finance is latency. Throughput measures the amount of data at any given time that it can handle whereas latency is the amount of time it takes to perform an action. It’s pointless saying you can process more transactions per second than VISA when it takes 60 seconds for a transaction to complete. Low latency also greatly increases general usability and customer satisfaction, nowadays everyone expects card payments, online payments to happen instantly. Avalanche achieves the best results scoring ✅✅✅, Cosmos with comes in second with 6 second finality ✅✅ and Polkadot with 60 second finality (which may be 60 minutes for external blockchains) scores ✅
https://preview.redd.it/qe8e5ltudhq51.png?width=1000&format=png&auto=webp&s=18a2866104590f81a818690337f9121161dda890

Shared Security

Cosmos

Every Zone and Hub in Cosmos has their own validator set and different trust assumptions. Cosmos are researching a shared security model where a Hub can validate the state of connected zones for a fee but not released yet. Once available this will make shared security optional rather than mandatory.

Polkadot

Shared Security is mandatory with Polkadot which uses a Shared State infrastructure between the Relay Chain and all of the connected parachains. If the Relay Chain must revert for any reason, then all of the parachains would also revert. Every parachain makes the same trust assumptions, and as such the relay chain validates state transition and enables seamless interoperability between them. In return for this benefit, they have to purchase DOT and win an auction for one of the available parachain slots.
However, parachains can’t just rely on the relay chain for their security, they will also need to implement censorship resistance measures and utilise proof of work / proof of stake for each parachain as well as discussed in part three, thus parachains can’t just rely on the security of the relay chain, they need to ensure sybil resistance mechanisms using POW and POS are implemented on the parachain as well.

Avalanche

A subnet in Avalanche consists of a dynamic set of validators working together to achieve consensus on the state of a set of many blockchains where complex rulesets can be configured to meet regulatory compliance. So unlike in Cosmos where each zone / hub has their own validators, A subnet can validate a single or many virtual machines / blockchains with a single validator set. Shared security is optional

Results

Shared security is mandatory in polkadot and a key design decision in its infrastructure. The relay chain validates the state transition of all connected parachains and thus scores ✅✅✅. Subnets in Avalanche can validate state of either a single or many virtual machines. Each subnet can have their own token and shares a validator set, where complex rulesets can be configured to meet regulatory compliance. It scores ✅ ✅. Every Zone and Hub in cosmos has their own validator set / token but research is underway to have the hub validate the state transition of connected zones, but as this is still early in the research phase scores ✅ for now.
https://preview.redd.it/0mnvpnzwdhq51.png?width=1000&format=png&auto=webp&s=8927ff2821415817265be75c59261f83851a2791

Current Adoption

Cosmos

The Cosmos project started in 2016 with an ICO held in April 2017. There are currently around 50 projects building on the Cosmos SDK with a full list can be seen here and filtering for Cosmos SDK . Not all of the projects will necessarily connect using native cosmos sdk and IBC and some have forked parts of the Cosmos SDK and utilise the tendermint consensus such as Binance Chain but have said they will connect in the future.

Polkadot

The Polkadot project started in 2016 with an ICO held in October 2017. There are currently around 70 projects building on Substrate and a full list can be seen here and filtering for Substrate Based. Like with Cosmos not all projects built using substrate will necessarily connect to Polkadot and parachains or parathreads aren’t currently implemented in either the Live or Test network (Kusama) as of the time of this writing.

Avalanche

Avalanche in comparison started much later with Ava Labs being founded in 2018. Avalanche held it’s ICO in July 2020. Due to lot shorter time it has been in development, the number of projects confirmed are smaller with around 14 projects currently building on Avalanche. Due to the customisability of the platform though, many virtual machines can be used within a subnet making the process incredibly easy to port projects over. As an example, it will launch with the Ethereum Virtual Machine which enables byte for byte compatibility and all the tooling like Metamask, Truffle etc. will work, so projects can easily move over to benefit from the performance, decentralisation and low gas fees offered. In the future Cosmos and Substrate virtual machines could be implemented on Avalanche.

Results

Whilst it’s still early for all 3 projects (and the entire blockchain space as a whole), there is currently more projects confirmed to be building on Cosmos and Polkadot, mostly due to their longer time in development. Whilst Cosmos has fewer projects, zones are implemented compared to Polkadot which doesn’t currently have parachains. IBC to connect zones and hubs together is due to launch Q2 2021, thus both score ✅✅✅. Avalanche has been in development for a lot shorter time period, but is launching with an impressive feature set right from the start with ability to create subnets, VMs, assets, NFTs, permissioned and permissionless blockchains, cross chain atomic swaps within a subnet, smart contracts, bridge to Ethereum etc. Applications can easily port over from other platforms and use all the existing tooling such as Metamask / Truffle etc but benefit from the performance, decentralisation and low gas fees offered. Currently though just based on the number of projects in comparison it scores ✅.
https://preview.redd.it/rsctxi6zdhq51.png?width=1000&format=png&auto=webp&s=ff762dea3cfc2aaaa3c8fc7b1070d5be6759aac2

Enterprise Adoption

Cosmos

Cosmos enables permissioned and permissionless zones which can connect to each other with the ability to have full control over who validates the blockchain. For permissionless zones each zone / hub can have their own token and they are in control who validates.

Polkadot

With polkadot the state transition is performed by a small randomly selected assigned group of validators from the relay chain plus with the possibility that state is rolled back if an invalid transaction of any of the other parachains is found. This may pose a problem for enterprises that need complete control over who performs validation for regulatory reasons. In addition due to the limited number of parachain slots available Enterprises would have to acquire and lock up large amounts of a highly volatile asset (DOT) and have the possibility that they are outbid in future auctions and find they no longer can have their parachain validated and parathreads don’t provide the guaranteed performance requirements for the application to function.

Avalanche

Avalanche enables permissioned and permissionless subnets and complex rulesets can be configured to meet regulatory compliance. For example a subnet can be created where its mandatory that all validators are from a certain legal jurisdiction, or they hold a specific license and regulated by the SEC etc. Subnets are also able to scale to tens of thousands of validators, and even potentially millions of nodes, all participating in consensus so every enterprise can run their own node rather than only a small amount. Enterprises don’t have to hold large amounts of a highly volatile asset, but instead pay a fee in AVAX for the creation of the subnets and blockchains which is burnt.

Results

Avalanche provides the customisability to run private permissioned blockchains as well as permissionless where the enterprise is in control over who validates the blockchain, with the ability to use complex rulesets to meet regulatory compliance, thus scores ✅✅✅. Cosmos is also able to run permissioned and permissionless zones / hubs so enterprises have full control over who validates a blockchain and scores ✅✅. Polkadot requires locking up large amounts of a highly volatile asset with the possibility of being outbid by competitors and being unable to run the application if the guaranteed performance is required and having to migrate away. The relay chain validates the state transition and can roll back the parachain should an invalid block be detected on another parachain, thus scores ✅.
https://preview.redd.it/7phaylb1ehq51.png?width=1000&format=png&auto=webp&s=d86d2ec49de456403edbaf27009ed0e25609fbff

Interoperability

Cosmos

Cosmos will connect Hubs and Zones together through its IBC protocol (due to release in Q1 2020). Connecting to blockchains outside of the Cosmos ecosystem would either require the connected blockchain to fork their code to implement IBC or more likely a custom “Peg Zone” will be created specific to work with a particular blockchain it’s trying to bridge to such as Ethereum etc. Each Zone and Hub has different trust levels and connectivity between 2 zones can have different trust depending on which path it takes (this is discussed more in this article). Finality time is low at 6 seconds, but depending on the number of hops, this can increase significantly.

Polkadot

Polkadot’s shared state means each parachain that connects shares the same trust assumptions, of the relay chain validators and that if one blockchain needs to be reverted, all of them will need to be reverted. Interoperability is enabled between parachains through Cross-Chain Message Passing (XCMP) protocol and is also possible to connect to other systems through bridges, which are specifically designed parachains or parathreads that each are custom made to interact with another ecosystem such as Ethereum and Bitcoin. Finality time between parachains is around 60 seconds, but longer will be needed (initial figures of 60 minutes in the whitepaper) for connecting to external blockchains. Thus limiting the appeal of connecting two external ecosystems together through Polkadot. Polkadot is also limited in the number of Parachain slots available, thus limiting the amount of blockchains that can be bridged. Parathreads could be used for lower performance bridges, but the speed of future blockchains is only going to increase.

Avalanche

A subnet can validate multiple virtual machines / blockchains and all blockchains within a subnet share the same trust assumptions / validator set, enabling cross chain interoperability. Interoperability is also possible between any other subnet, with the hope Avalanche will consist of thousands of subnets. Each subnet may have a different trust level, but as the primary network consists of all validators then this can be used as a source of trust if required. As Avalanche supports many virtual machines, bridges to other ecosystems are created by running the connected virtual machine. There will be an Ethereum bridge using the EVM shortly after mainnet. Finality time is much faster at sub 3 seconds (with most happening under 1 second) with no chance of rolling back so more appealing when connecting to external blockchains.

Results

All 3 systems are able to perform interoperability within their ecosystem and transfer assets as well as data, as well as use bridges to connect to external blockchains. Cosmos has different trust levels between its zones and hubs and can create issues depending on which path it takes and additional latency added. Polkadot provides the same trust assumptions for all connected parachains but has long finality and limited number of parachain slots available. Avalanche provides the same trust assumptions for all blockchains within a subnet, and different trust levels between subnets. However due to the primary network consisting of all validators it can be used for trust. Avalanche also has a much faster finality time with no limitation on the number of blockchains / subnets / bridges that can be created. Overall all three blockchains excel with interoperability within their ecosystem and each score ✅✅.
https://preview.redd.it/l775gue3ehq51.png?width=1000&format=png&auto=webp&s=b7c4b5802ceb1a9307bd2a8d65f393d1bcb0d7c6

Tokenomics

Cosmos

The ATOM token is the native token for the Cosmos Hub. It is commonly mistaken by people that think it’s the token used throughout the cosmos ecosystem, whereas it’s just used for one of many hubs in Cosmos, each with their own token. Currently ATOM has little utility as IBC isn’t released and has no connections to other zones / hubs. Once IBC is released zones may prefer to connect to a different hub instead and so ATOM is not used. ATOM isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for ATOM as of the time of this writing is $1 Billion with 203 million circulating supply. Rewards can be earnt through staking to offset the dilution caused by inflation. Delegators can also get slashed and lose a portion of their ATOM should the validator misbehave.

Polkadot

Polkadot’s native token is DOT and it’s used to secure the Relay Chain. Each parachain needs to acquire sufficient DOT to win an auction on an available parachain lease period of up to 24 months at a time. Parathreads have a fixed fee for registration that would realistically be much lower than the cost of acquiring a parachain slot and compete with other parathreads in a per-block auction to have their transactions included in the next relay chain block. DOT isn’t a fixed capped supply token and supply will continuously increase with a yearly inflation of around 10% depending on the % staked. The current market cap for DOT as of the time of this writing is $4.4 Billion with 852 million circulating supply. Delegators can also get slashed and lose their DOT (potentially 100% of their DOT for serious attacks) should the validator misbehave.

Avalanche

AVAX is the native token for the primary network in Avalanche. Every validator of any subnet also has to validate the primary network and stake a minimum of 2000 AVAX. There is no limit to the number of validators like other consensus methods then this can cater for tens of thousands even potentially millions of validators. As every validator validates the primary network, this can be a source of trust for interoperability between subnets as well as connecting to other ecosystems, thus increasing amount of transaction fees of AVAX. There is no slashing in Avalanche, so there is no risk to lose your AVAX when selecting a validator, instead rewards earnt for staking can be slashed should the validator misbehave. Because Avalanche doesn’t have direct slashing, it is technically possible for someone to both stake AND deliver tokens for something like a flash loan, under the invariant that all tokens that are staked are returned, thus being able to make profit with staked tokens outside of staking itself.
There will also be a separate subnet for Athereum which is a ‘spoon,’ or friendly fork, of Ethereum, which benefits from the Avalanche consensus protocol and applications in the Ethereum ecosystem. It’s native token ATH will be airdropped to ETH holders as well as potentially AVAX holders as well. This can be done for other blockchains as well.
Transaction fees on the primary network for all 3 of the blockchains as well as subscription fees for creating a subnet and blockchain are paid in AVAX and are burnt, creating deflationary pressure. AVAX is a fixed capped supply of 720 million tokens, creating scarcity rather than an unlimited supply which continuously increase of tokens at a compounded rate each year like others. Initially there will be 360 tokens minted at Mainnet with vesting periods between 1 and 10 years, with tokens gradually unlocking each quarter. The Circulating supply is 24.5 million AVAX with tokens gradually released each quater. The current market cap of AVAX is around $100 million.

Results

Avalanche’s AVAX with its fixed capped supply, deflationary pressure, very strong utility, potential to receive air drops and low market cap, means it scores ✅✅✅. Polkadot’s DOT also has very strong utility with the need for auctions to acquire parachain slots, but has no deflationary mechanisms, no fixed capped supply and already valued at $3.8 billion, therefore scores ✅✅. Cosmos’s ATOM token is only for the Cosmos Hub, of which there will be many hubs in the ecosystem and has very little utility currently. (this may improve once IBC is released and if Cosmos hub actually becomes the hub that people want to connect to and not something like Binance instead. There is no fixed capped supply and currently valued at $1.1 Billion, so scores ✅.
https://preview.redd.it/zb72eto5ehq51.png?width=1000&format=png&auto=webp&s=0ee102a2881d763296ad9ffba20667f531d2fd7a
All three are excellent projects and have similarities as well as many differences. Just to reiterate this article is not intended to be an extensive in-depth list, but rather an overview based on some of the criteria that I feel are most important. For a more in-depth view I recommend reading the articles for each of the projects linked above and coming to your own conclusions, you may have different criteria which is important to you, and score them differently. There won’t be one platform to rule them all however, with some uses cases better suited to one platform over another, and it’s not a zero-sum game. Blockchain is going to completely revolutionize industries and the Internet itself. The more projects researching and delivering breakthrough technology the better, each learning from each other and pushing each other to reach that goal earlier. The current market is a tiny speck of what’s in store in terms of value and adoption and it’s going to be exciting to watch it unfold.
https://preview.redd.it/fwi3clz7ehq51.png?width=1388&format=png&auto=webp&s=c91c1645a4c67defd5fc3aaec84f4a765e1c50b6
xSeq22x your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

I built a decentralized legal-binding smart contract system. I need peer reviewers and whitepaper proof readers. Help greatly appreciated!

I posted this on /cryptotechnology . It attracted quite a bit of upvotes but not many potential contributors. Someone mentioned I should try this sub. I read the rules and it seems to fit within them. Hope this kind of post is alright here...
EDIT: My mother language is french (I'm from Montreal/Canada). Please excuse any blatant grammatical errors.
TLDR: I built a decentralized legal-binding smart contract system. I need peer reviewers and whitepaper proof readers. If you're interested, send me an email to discuss: [email protected] . Thanks in advance!
Hi guys,
For the last few years, I've been working on a decentralized legal-binding contract system. Basically, I created a PoW blockchain software that can receive a hash as an address, and another hash as a bucket, in each transaction.
The address hash is used to tell a specific entity (application/contract/company/person, etc) that uses the blockchain that this transaction might be addressed to them. The bucket hash simply tells the nodes which hashtree of files they need to download in order to execute that contract.
The buckets are shared within the network of nodes. Someone could, for example, write a contract with a series of nodes in order to host their data for them. Buckets can hold any kind of data, and can be of any size... including encrypted data.
The blockchain's blocks are chained together using a mining system similar to bitcoin (hashcash algorithm). Each block contains transactions. The requested difficulty increases when the amount of transactions in a block increases, linearly. Then, when a block is mined properly, another smaller mining effort is requested to link the block to the network's head block.
To replace a block, you need to create another block with more transactions than the amount that were transacted in and after the mined block.
I expect current payment processors to begin accepting transactions and mine them for their customers and make money with fees, in parallel. Using such a mechanism, miners will need to have a lot of bandwidth available in order to keep downloading the blocks of other miners, just like the current payment processors.
The contracts is code written in our custom programming language. Their code is pushed using a transaction, and hosted in buckets. Like you can see, the contract's data are off-chain, only its bucket hash is on-chain. The contract can be used to listen to events that occurs on the blockchain, in any buckets hosted by nodes or on any website that can be crawled and parsed in the contract.
There is also an identity system and a vouching system...which enable the creation of soft-money (promise of future payment in hard money (our cryptocurrency) if a series of events arrive).
The contracts can also be compiled to a legal-binding framework and be potentially be used in court. The contracts currently compile to english and french only.
I also built a browser that contains a 3D viewport, using OpenGL. The browser contains a domain name system (DNS) in form of contracts. Anyone can buy a new domain by creating a transaction with a bucket that contains code to reserve a specific name. When a user request a domain name, it discovers the bucket that is attached to the domain, download that bucket and executes its scripts... which renders in the 3D viewport.
When people interact with an application, the application can create contracts on behalf of the user and send them to the blockchain via a transaction. This enables normal users (non-developers) to interact with others using legal contracts, by using a GUI software.
The hard money (cryptocurrency) is all pre-mined and will be sold to entities (people/company) that want to use the network. The hard money can be re-sold using the contract proposition system, for payment in cash or a bank transfer. The fiat funds will go to my company in order to create services that use this specific network of contracts. The goal is to use the funds to make the network grow and increase its demand in hard money. For now, we plan to create:
A logistic and transportation company
A delivery company
A company that buy and sell real estate options
A company that manage real estate
A software development company
A world-wide fiat money transfer company
A payment processor company
We chose these niche because our team has a lot of experience in these areas: we currently run companies in these fields. These niche also generate a lot of revenue and expenses, making the value of exchanges high. We expect this to drive volume in contracts, soft-money and hard-money exchanges.
We also plan to use the funds to create a venture capital fund that invests in startups that wants to create contracts on our network to execute a specific service in a specific niche.
I'm about to release the software open source very soon and begin executing our commercial activities on the network. Before launching, I'd like to open a discussion with the community regarding the details of how this software works and how it is explained in the whitepaper.
If you'd like to read the whitepaper and open a discussion with me regarding how things work, please send me an email at [email protected] .
If you have any comment, please comment below and Ill try to answer every question. Please note that before peer-reviewing the software and the whitepaper, I'd like to keep the specific details of the software private, but can discuss the general details. A release date will be given once my work has been peer reviewed.
Thanks all in advance!
P.S: This project is not a competition to bitcoin. My goal with this project is to enable companies to write contracts together, easily follow events that are executed in their contracts, understand what to expect from their partnership and what they need to give in order to receive their share of deals... and sell their contracts that they no longer need to other community members.
Bitcoin already has a network of people that uses it. It has its own value. In fact, I plan to create contracts on our network to exchange value from our network for bitcoin and vice-versa. Same for any commodity and currency that currently exits in this world.
submitted by steve-rodrigue to compsci [link] [comments]

NEAR PROJECT REPORT

NEAR PROJECT REPORT
Author: Gamals Ahmed, CoinEx Business Ambassador
https://preview.redd.it/xbnvecjn71t51.png?width=1164&format=png&auto=webp&s=acfd141ead035ee156f218eec9fc41288142a922

ABSTRACT

The effects of the web by a number of companies have seduced a large number of users as these companies keep their data to prevent them from searching for alternatives. Likewise, these huge platforms have attracted applications to build their highest ecosystems before either severing access or actively opposing their interests when the applications became so successful. As a result, these walled gardens have effectively hindered innovation and monopolized large sections of the web. After the emergence of blockchain technology and decentralized cryptocurrencies, the need for applications to support decentralization has emerged. Several blockchain-based companies, applications and platforms have appeared in decentralization. In this research report, we will explain the approach adopted by the NEAR decentralization platform in designing and implementing the basic technology for its system. Near is a basic platform for cloud computing and decentralized storage managed by the community, designed to enable the open web for the future. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.

1. INTRODUCTION

The richness of the web is increasing day by day with the combined efforts of millions of people who have benefited from “innovation without permission” as content and applications are created without asking anyone. this lack of freedom of data has led to an environment hostile to the interests of its participants. And as we explained in the summary previously, web hosting companies have hindered innovation and greatly monopolized the web.
In the future, we can fix this by using new technologies to re-enable the permissionless innovation of the past in a way, which creates a more open web where users are free and applications are supportive rather than adversarial to their interests.
Decentralization emerged after the global financial crisis in 2008, which created fundamental problems of confidence in the heavily indebted banking system. Then the decentralized financial sector based on Blockchain technology has emerged since 2009.
Decentralized Blockchain technology has made it easy for decentralized digital currencies like Bitcoin to exchange billions of dollars in peer-to-peer transfers for a fraction of the price of a traditional banking system. This technology allows participants in the over $ 50 billion virtual goods economy to track, own and trade in these commodities without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
By default, the Internet where freedom of data enables innovation will lead to the development of a new form of software development. On this web, developers can quickly create applications from open state components and boost their efforts by using new business models that are enabled from within the program itself rather than relying on parasitic relationships with their users. This not only accelerates the creation of applications that have a more honest and cooperative relationship with its users, but also allows the emergence of completely new business built on them.
To enable these new applications and the open web, it needs the appropriate infrastructure. The new web platform cannot be controlled by a single entity and its use is not limited due to insufficient scalability. It should be decentralized in design like the web itself and supported by a community of distributors widely so that the value they store cannot be monitored, modified or removed without permission from the users who store this value on their behalf.
A new decentralization technology (Blockchain), which has facilitated decentralized digital currencies like Bitcoin, has made billions of dollars in peer-to-peer transfers at a fraction of the price of the traditional banking system. This technology allows participants in the $ 50 billion + virtual goods economy to track, own and trade in these goods without permission. It allows real-world goods to cross into the digital domain, with verified ownership and tracking just like that of the digital.
Although the cost of storing data or performing a calculation on the Ethereum blockchain is thousands and millions of times higher than the cost of performing the same functionality on Amazon Web Services. A developer can always create a “central” app or even a central currency for a fraction of the cost of doing the same on a decentralized platform because a decentralized platform, by definition, will have many iterations in its operations and storage.
Bitcoin can be thought of as the first, very basic, version of this global community-run cloud, though it is primarily used only to store and move the Bitcoin digital currency.
Ethereum is the second and slightly more sophisticated version, which expanded the basic principles of Bitcoin to create a more general computing and storage platform, though it is a raw technology, which hasn’t achieved meaningful mainstream adoption.

1.1 WHY IS IT IMPORTANT TO PAY THE EXTRA COST TO SUPPORT DECENTRALIZATION?

Because some elements of value, for example bits representing digital currency ownership, personal identity, or asset notes, are very sensitive. While in the central system, the following players can change the value of any credits they come into direct contact with:
  1. The developer who controls the release or update of the application’s code
  2. The platform where the data is stored
  3. The servers which run the application’s code
Even if none of these players intend to operate with bad faith, the actions of governments, police forces and hackers can easily turn their hands against their users and censor, modify or steal the balances they are supposed to protect.
A typical user will trust a typical centralized application, despite its potential vulnerabilities, with everyday data and computation. Typically, only banks and governments are trusted sufficiently to maintain custody of the most sensitive information — balances of wealth and identity. But these entities are also subject to the very human forces of hubris, corruption and theft.
Especially after the 2008 global financial crisis, which demonstrated the fundamental problems of confidence in a highly indebted banking system. And governments around the
world apply significant capital controls to citizens during times of crisis. After these examples, it has become a truism that hackers now own most or all of your sensitive data.
These decentralized applications operate on a more complex infrastructure than today’s web but they have access to an instantaneous and global pool of currency, value and information that today’s web, where data is stored in the silos of individual corporations, cannot provide.

1.2 THE CHALLENGES OF CREATING A DECENTRALIZED CLOUD

A community-run system like this has very different challenges from centralized “cloud” infrastructure, which is running by a single entity or group of known entities. For example:
  1. It must be both inclusive to anyone and secure from manipulation or capture.
  2. Participants must be fairly compensated for their work while avoiding creating incentives for negligent or malicious behavior.
  3. It must be both game theoretically secure so good actors find the right equilibrium and resistant to manipulation so bad actors are actively prevented from negatively affecting the system.

2. NEAR

NEAR is a global community-run computing and storage cloud which is organized to be permissionless and which is economically incentivized to create a strong and decentralized data layer for the new web.
Essentially, it is a platform for running applications which have access to a shared — and secure — pool of money, identity and data which is owned by their users. More technically, it combines the features of partition-resistant networking, serverless compute and distributed storage into a new kind of platform.
NEAR is a community-managed, decentralized cloud storage and computing platform, designed to enable the open web in the future. It uses the same core technology for Bitcoin and Blockchain. On this web, everything can be created from new currencies to new applications to new industries, opening the door to an entirely new future.
NEAR is a decentralized community-run cloud computing and storage platform, which is designed to enable the open web of the future. On this web, everything from new currencies to new applications to new industries can be created, opening the door to a brand new future.
NEAR is a scalable computing and storage platform with the potential to change how systems are designed, how applications are built and how the web itself works.
It is a complex technology allow developers and entrepreneurs to easily and sustainably build applications which reap the benefits of decentralization and participate in the Open Web while minimizing the associated costs for end users.
NEAR creates the only community-managed cloud that is strong enough to power the future of the open web, as NEAR is designed from the ground up to deliver intuitive experiences to
end users, expand capacity across millions of devices, and provide developers with new and sustainable business models for their applications.
The NEAR Platform uses a token — also called “NEAR”. This token allows the users of these cloud resources, regardless of where they are in the world, to fairly compensate the providers of the services and to ensure that these participants operate in good faith.

2.1 WHY NEAR?

Through focus, we find that Platforms based on blockchain technologies like Bitcoin and Ethereum have made great progress and enriched the world with thousands of innovative applications spanning from games to decentralized financing.
However, these original networks and none of the networks that followed were not able to bridge the gap towards mainstream adoption of the applications created above them and do not provide this type of standard that fully supports the web.
This is a result of two key factors:
  1. System design
  2. Organization design
System design is relevant because the technical architecture of other platforms creates substantial problems with both usability and scalability which have made adoption nearly impossible by any but the most technical innovators. End-users experience 97–99% dropoff rates when using applications and developers find the process of creating and maintaining their applications endlessly frustrating.
Fixing these problems requires substantial and complex changes to current protocol architectures, something which existing organizations haven’t proven capable of implementing. Instead, they create multi-year backlogs of specification design and implementation, which result in their technology falling further and further behind.
NEAR’s platform and organization are architected specifically to solve the above-mentioned problems. The technical design is fanatically focused on creating the world’s most usable and scalable decentralized platform so global-scale applications can achieve real adoption. The organization and governance structure are designed to rapidly ship and continuously evolve the protocol so it will never become obsolete.

2.1.1 Features, which address these problems:

1. USABILITY FIRST
The most important problem that needs to be addressed is how to allow developers to create useful applications that users can use easily and that will capture the sustainable value of these developers.
2. End-User Usability
Developers will only build applications, which their end users can actually use. NEAR’s “progressive security” model allows developers to create experiences for their users which more closely resemble familiar web experiences by delaying onboarding, removing the need for user to learn “blockchain” concepts and limiting the number of permission-asking interactions the user must have to use the application.
1. Simple Onboarding: NEAR allows developers to take actions on behalf of their users, which allows them to onboard users without requiring these users to provide a wallet or interact with tokens immediately upon reaching an application. Because accounts keep track of application-specific keys, user accounts can also be used for the kind of “Single Sign On” (SSO) functionality that users are familiar with from the traditional web (eg “Login with Facebook/Google/Github/etc”).
2. Easy Subscriptions: Contract-based accounts allow for easy creation of subscriptions and custom permissioning for particular applications.
3. Familiar Usage Styles: The NEAR economic model allows developers to pay for usage on behalf of their users in order to hide the costs of infrastructure in a way that is in line with familiar web usage paradigms.
4. Predictable Pricing: NEAR prices transactions on the platform in simple terms, which allow end-users to experience predictable pricing and less cognitive load when using the platform.

2.1.2 Design principles and development NEAR’s platform

1. Usability: Applications deployed to the platform should be seamless to use for end users and seamless to create for developers. Wherever possible, the underlying technology itself should fade to the background or be hidden completely from end users. Wherever possible, developers should use familiar languages and patterns during the development process. Basic applications should be intuitive and simple to create while applications that are more robust should still be secure.
2. Scalability: The platform should scale with no upper limit as long as there is economic justification for doing so in order to support enterprise-grade, globally used applications.
3. Sustainable Decentralization: The platform should encourage significant decentralization in both the short term and the long term in order to properly secure the value it hosts. The platform — and community — should be widely and permissionlessly inclusive and actively encourage decentralization and participation. To maintain sustainability, both technological and community governance mechanisms should allow for practical iteration while avoiding capture by any single parties in the end.
4. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose. Optimize for simplicity, pragmatism and ease of understanding above theoretical perfection.

2.2 HOW NEAR WORKS?

NEAR’s platform provides a community-operated cloud infrastructure for deploying and running decentralized applications. It combines the features of a decentralized database with others of a serverless compute platform. The token, which allows this platform to run also, enables applications built on top of it to interact with each other in new ways. Together, these features allow developers to create censorship resistant back-ends for applications that deal with high stakes data like money, identity, assets, and open-state components, which interact seamlessly with each other. These application back-ends and components are called “smart contracts,” though we will often refer to these all as simply “applications” here.
The infrastructure, which makes up this cloud, is created from a potentially infinite number of “nodes” run by individuals around the world who offer portions of their CPU and hard drive space — whether on their laptops or more professionally deployed servers. Developers write smart contracts and deploy them to this cloud as if they were deploying to a single server, which is a process that feels very similar to how applications are deployed to existing centralized clouds.
Once the developer has deployed an application, called a “smart contract”, and marked it unchangeable (“immutable”), the application will now run for as long as at least a handful of members of the NEAR community continue to exist. When end users interact with that deployed application, they will generally do so through a familiar web or mobile interface just like any one of a million apps today.
In the central cloud hosted by some companies today like: Amazon or Google, developers pay for their apps every month based on the amount of usage needed, for example based on the number of requests created by users visiting their webpages. The NEAR platform similarly requires that either users or developers provide compensation for their usage to the community operators of this infrastructure. Like today’s cloud infrastructure, NEAR prices usage based on easy to understand metrics that aren’t heavily influenced by factors like system congestion. Such factors make it very complicated for developers on alternative blockchain-based systems today.
In the centralized cloud, the controlling corporation makes decisions unilaterally. NEAR community-run cloud is decentralized so updates must ultimately be accepted by a sufficient quorum of the network participants. Updates about its future are generated from the community and subject to an inclusive governance process, which balances efficiency and security.
In order to ensure that the operators of nodes — who are anonymous and potentially even malicious — run the code with good behavior, they participate in a staking process called “Proof of Stake”. In this process, they willingly put a portion of value at risk as a sort of deposit, which they will forfeit if it is proven that they have operated improperly.

2.2.1 Elements of the NEAR’s Platform

The NEAR platform is made up of many separate elements. Some of these are native to the platform itself while others are used in conjunction with or on top of it.
1. THE NEAR TOKEN
NEAR token is the fundamental native asset of the NEAR ecosystem and its functionality is enabled for all accounts. Each token is a unique digital asset similar to Ether, which can be used to:
a) Pay the system for processing transactions and storing data.
b) Run a validating node as part of the network by participating in the staking process.
c) Help determine how network resources are allocated and where its future technical direction will go by participating in governance processes.
The NEAR token enables the economic coordination of all participants who operate the network plus it enables new behaviors among the applications which are built on top of that network.
2. OTHER DIGITAL ASSETS
The platform is designed to easily store unique digital assets, which may include, but aren’t limited to:
  • Other Tokens: Tokens bridged from other chains (“wrapped”) or created atop the NEAR Platform can be easily stored and moved using the underlying platform. This allows many kinds of tokens to be used atop the platform to pay for goods and services. “Stablecoins,” specific kinds of token which are designed to match the price of another asset (like the US Dollar), are particularly useful for transacting on the network in this way.
  • Unique Digital Assets: Similar to tokens, digital assets (sometimes called “Non Fungible Tokens” (NFTs) ranging from in-game collectibles to representations of real-world asset ownership can be stored and moved using the platform.
3. THE NEAR PLATFORM
The core platform, which is made up of the cloud of community-operated nodes, is the most basic piece of infrastructure provided. Developers can permissionlessly deploy smart contracts to this cloud and users can permissionlessly use the applications they power. Applications, which could range from consumer-facing games to digital currencies, can store their state (data) securely on the platform. This is conceptually similar to the Ethereum platform.
Operations that require an account, network use, or storage at the top of the platform require payment to the platform in the form of transaction fees that the platform then distributes to its community from the authentication contract. These operations could include creating new accounts, publishing new contracts, implementing code by contract and storing or modifying data by contract.
As long as the rules of the protocol are followed, any independent developer can write software, which interfaces with it (for example, by submitting transactions, creating accounts or even running a new node client) without asking for anyone’s permission first.
4. THE NEAR DEVELOPMENT SUITE
Set of tools and reference implementations created to facilitate its use by those developers and end users who prefer them. These tools include:
  • NEAR SDKs: NEAR platform supports (Rust and AssemblyScript) languages to write smart contracts. To provide a great experience for developers, NEAR has a full SDK, which includes standard data structures, examples and testing tools for these two languages.
  • Gitpod for NEAR: NEAR uses existing technology Gitpod to create zero time onboarding experience for developers. Gitpod provides an online “Integrated Development Environment” (IDE), which NEAR customized to allow developers to easily write, test and deploy smart contracts from a web browser.
  • NEAR Wallet: A wallet is a basic place for developers and end users to store the assets they need to use the network. NEAR Wallet is a reference implementation that is intended to work seamlessly with the progressive security model that lets application developers design more effective user experiences. It will eventually include built-in functionality to easily enable participation by holders in staking and governance processes on the network.
  • NEAR Explorer: To aid with both debugging of contracts and the understanding of network performance, Explorer presents information from the blockchain in an easily digestible web-based format.
  • NEAR Command Line Tools: The NEAR team provides a set of straightforward command line tools to allow developers to easily create, test and deploy applications from their local environments.
All of these tools are being created in an open-source manner so they can be modified or deployed by anyone.

3. ECONOMIC

Primarily economic forces drive the ecosystem, which makes up the NEAR platform. This economy creates the incentives, which allow participants permissionlessly organize to drive the platform’s key functions while creating strong disincentives for undesirable, irresponsible or malicious behavior. In order for the platform to be effective, these incentives need to exist both in the short term and in the long term.
The NEAR platform is a market among participants interested in two aspects:
  • On the supply side, certification contract operators and other core infrastructure must be motivated to provide these services that make up the community cloud.
  • On the demand side, platform developers and end-users who pay for their use need to be able to do so in a simple, clear and consistent way that helps them.
Further, economic forces can also be applied to support the ecosystem as a whole. They can be used at a micro level to create new business models by directly compensating the developers who create its most useful applications. They can also be used at a macro level by coordinating the efforts of a broader set of ecosystem participants who participate in everything from education to governance.

3.1 NEAR ECONOMY DESIGN PRINCIPLES

NEAR’s overall system design principles are used to inform its economic design according to the following interpretations:
1. Usability: End users and developers should have predictable and consistent pricing for their usage of the network. Users should never lose data forever.
2. Scalability: The platform should scale at economically justified thresholds.
3. Simplicity: The design of each of the system’s components should be as simple as possible in order to achieve their primary purpose.
4. Sustainable Decentralization: The barrier for participation in the platform as a validating node should be set as low as possible in order to bring a wide range of participants. Over time, their participation should not drive wealth and control into the hands of a small number. Individual transactions made far in the future must be at least as secure as those made today in order to safeguard the value they modify.

3.2 ECONOMIC OVERVIEW

The NEAR economy is optimized to provide developers and end users with the easiest possible experience while still providing proper incentives for network security and ecosystem development.
Summary of the key ideas that drive the system:
  • Thresholded Proof of Stake: Validating node operators provide scarce and valuable compute resources to the network. In order to ensure that the computations they run are correct, they are required to “stake” NEAR tokens, which guarantee their results. If these results are found to be inaccurate, the staker loses their tokens. This is a fundamental mechanism for securing the network. The threshold for participating in the system is set algorithmically at the lowest level possible to allow for the broadest possible participation of validating nodes in a given “epoch” period (½ of a day).
  • Epoch Rewards: Node operators are paid for their service a fixed percentage of total supply as a “security” fee of roughly 4.5% annualized. This rate targets sufficient participation levels among stakers in order to secure the network while balancing with other usage of NEAR token in the ecosystem.
  • Protocol treasury: In addition to validators, protocol treasury received a 0.5% of total supply annually to continuously re-invest into ecosystem development.
  • Transaction Costs: Usage of the network consumes two separate kinds of resources — instantaneous and long term. Instantaneous costs are generated by every transaction because each transaction requires the usage of both the network itself and some of its computation resources. These are priced together as a mostly-predictable cost per transaction, which is paid in NEAR tokens.
  • Storage Costs: Storage is a long term cost because storing data represents an ongoing burden to the nodes of the network. Storage costs are covered by maintaining minimum balance of NEAR tokens on the account or contract. This provides indirect mechanism of payment via inflation to validators for maintaining contract and account state on their nodes.
  • Inflation: Inflation is determined as combination of payouts to validators and protocol treasury minus the collected transaction fees and few other NEAR burning mechanics (like name auction). Overall the maximum inflation is 5%, which can go down over time as network gets more usage and more transactions fees are burned. It’s possible that inflation becomes negative (total supply decreases) if there is enough fees burned.
  • Scaling Thresholds: In a network, which scales its capacity relative to the amount of usage it receives, the thresholds, which drive the network to bring on additional capacity are economic in nature.
  • Security Thresholds: Some thresholds, which provide for good behavior among participants are set using economic incentives. For example, “Fishermen” (described separately).
Full Report
submitted by CoinEx_Institution to Coinex [link] [comments]

Here is how to play the altcoin game - for newbies & champs

I have been here for many previous altcoin seasons (2013,2017 etc) and wanted to share knowedle. It's a LOOONG article.
The evaluation of altcoins (i.e not Bitcoin) is one of the most difficult and profitable exercises. Here I will outline my methodology and thinking but we have to take some things as a given. The first is that the whole market is going up or down with forces that we can't predict or control. Bitcoin is correlated with economic environments, money supply increases, safe havens such as Gold, hype and country regulations. This is an impossible mix to analyze and almost everyone fails at it. That's why you see people valuing Bitcoin from $100 to $500k frequently. Although I am bullish on the prospects of Bitcoin and decentralization and smart contract platforms, this is not the game I will be describing. I am talking about a game where you try to maximize your BTC holdings by investing in altcoins. We win this game even if we are at a loss in fiat currency value. To put it another way:
If you are not bullish in general on cryptocurrencies you have no place in investing or trading cryptocurrencies since it's always a losing proposition to trade in bubbles, a scientifically proven fact. If on the other hand you are then your goal is to grow your portfolio more than you would if holding BTC/ETH for example.

Bitcoin is the big boy

How the market works is not easily identifiable if you haven't graduated from the 2017 crypto university. When there is a bull market everything seems amazingly profitable and things keep going up outgrowing Bitcoin by orders of magnitude and you are a genius. The problem with this is that it only works while Bitcoin is going up a little bit or trades sideways. When it decides to move big then altcoins lose value both on the way up and on the way down. The second part is obvious and proven since all altcoins from 2017 are at a fraction of their BTC value (usually in the range of 80% or more down). Also, when BTC is making a big move upwards everyone exits altcoins to ride the wave. It is possible that the altcoin market behaves as an inversed leveraged ETF with leakage where in a certain period while Bitcoin starts at 10k and ends at 10k for example, altcoins have lost a lot of value because of the above things happening.

We are doing it anyway champ!

OK so we understand the risks and just wanna gambol with our money right? I get it. Why do that? Because finding the ideal scenario and period can be extremely profitable. In 2017 several altcoins went up 40x more than BTC. But again, if you don't chose wisely many of them have gone back to zero (the author has first hand experience in this!), they have been delisted and nobody remembers them. The actual mentality to have is very important and resembles poker and other speculative games:
A certain altcoin can go up in value indefinitely but can only lose it's starting investment. Think about it. You either lose 1 metric or gain many many more. Now that sounds amazing but firstly as we said we have the goal to outperform our benchmark (BTC) and secondly that going up in value a lot means that the probability is quite low. There is this notion of Expected Value (EV) that poker players apply in these kind of situations and it goes like that. If you think that a certain coin has a probability let's say 10% to go up 10X and 90% probability it goes to zero it's an even bet. If you think that probability is 11% then it's a good bet, a profitable bet and you should take it. You get the point right? It's not that it can only go 10X or 0X, there is a whole range of probability outcomes that are too mathematical to explain here and it doesn't help so much because nobody can do such analysis with altcoins. See below on how we can approximate it.

How to evaluate altcoins

A range of different things to take into account outlined below will form our decision making. Not a single one of them should dictate 100% of our strategy.

Basics

It's all about market cap. Repeat after me. The price of a coin doesn't mean anything. Say it 10 times until you believe it. I can't remember how many times I had conversations with people that were comparing coins using their coin price instead of their market cap. To make this easy to get.
If I decide because the sky is blue to make my coin supply 100 Trillion FoolCoins with a price of $0.001 and there is another WiseCoin with a supply of 100 Million and price of $1 then FoolCoins are more expensive. - Alex Fin's Cap Law

Fundamental analysis

This is done usually in the stock world and it means that each company has some fundamental value that includes it's assets, customers, growth prospects, sector prospects and leadership competence but mostly centered in financial measures such as P/E ratios etc. Valuation is a proper economic discipline by itself taught in universities. OK, now throw everything out of the window!.
This kind of analysis is impossible in vague concepts and innovations that are currently cryptocurrencies. Ethereum was frequently priced at the fictional price of gas when all financial systems on earth run on the platform after decades (a bit of exaggeration here). No project is currently profitable enough to justify a valuation multiple that is usually equal to P/E in the thousands or more. As such we need to take other things into account. What I do is included in the list below:

Relative valuation

One of my favorite ways to value altcoins that is based on the same principle in the stock market is to look at peers and decide what is the maximum cap it can grow to. As an example you take a second layer Ethereum solution that has an ICO and you want to decide if you will enter or not. You can take a look at other coins that are in the same business and compare their market caps. Thinking that your coin will outperform by a lot the top coins currently is overly optimistic so I usually take a lower valuation as a target price. If the initial offering is directly implying a valuation that is more than that then there is no room to grow according to my analysis and I skip it. Many times this has proven me wrong because it's a game theory problem where if many people think irrationally in a market it becomes a self-fulfilling prophecy. But since there is opportunity cost involved, in the long run, getting in initial offerings that have a lot of room to grow will pay off as a strategy.

Sector prospects

In 2017 the sexiest sector was platforms and then coins including privacy ones. Platforms are obviously still a highly rated sector because everything is being built on them, but privacy is not as hot as it used to be. In 2018 DEXes were all they hype but still people are massively using centralized exchanges. In 2020 Defi is the hottest sector and it includes platforms, oracles and Defi projects. What I am saying is that a project gets extra points if it's a Defi one in 2020 and minus points if it's a payment system that will conquer the world as it was in 2017 because that's old news. This is closely related to the next section.

Hype

Needless to say that the crypto market is a worse FOMO type of inexperienced trigger happy yolo investors , much worse than the Robinhood crowd that drove a bankrupt company's stock 1200% after they declared bankruptcy. The result is that there are numerous projects that are basically either vaporware or just so overhyped that their valuation has no connection to reality. Should we avoid those kind of projects? No and I will explain why. There are many very good technically projects that had zero hype potential due to incompetent marketing departments that made them tank. An example (without shilling because I sold out a while back) is Quantum Resistant Ledger. This project has amazing quantum resistant blockchain, the only one running now, has a platform that people can build tokens and messaging systems and other magnificent stuff. Just check how they fared up to now and you will get the point. A project *needs* to have a hype factor because you cannot judge it as normal stocks that you can do value investing like Warren Buffet does where a company will inevitable post sales and profitability numbers and investors will get dividends. Actually the last sentence is the most important: No dividends. Even projects that give you tokens or coins as dividends are not real dividends because if the coin tanks the value of the dividend tanks. This is NOT the case with company stocks where you get dollars even if the company stock tanks. All that being said, I would advice against betting on projects that have a lot of hype but little substance (but that should be obvious!).

How to construct your portfolio

My strategy and philosophy in investing is that risk should be proportional to investment capital. That means that if you are investing 100K in the crypto market your portfolio should be very different than someone investing 1K because 10% annual gains are nothing in the latter while they are very significant in the former. Starting from this principle each individual needs to construct a portfolio according to how much risk he wants to take. I will emphasize two important concepts that play well with what I said. In the first instance of a big portfolio you should concentrate on this mantra: "Diversification is the only free meal in finance". In the case of a small portfolio then this mantra is more important: "Concentrate to create wealth, diversify to maintain wealth". Usually in a big portfolio you would want to hold some big coins such as BTC and ETH to weather the ups and downs explained in previous paragraphs while generating profits and keep progressively smaller parts of your portfolio for riskier investments. Maybe 50% of this portfolio could be big caps and 10% very risky initial offerings. Adapting risk progressively to smaller portfolios makes sense but I think it would be irrational to keep more than 30% of a portfolio no matter what tied to one coin due to the very high risk of bankruptcy.

Conclusion

The altseason is supposedly coming every 3 months. Truth is that nobody can predict it but altcoins can be profitable no matter what. Forget about maximalists who are stuck in their dogmas. Altcoins deliver different value propositions and it makes sense because we are very far from a situation where some project offers everything like Amazon and we wouldn't even want that in the first place since we are talking about decentralization and not a winner takes all and becomes a monster kind of scenario! Some last minute advice:
P.S If you find value in reading this and want more weekly consider subscribing to my newsletter here
submitted by aelaos1 to CryptoCurrency [link] [comments]

Stakenet (XSN) - A DEX with interchain capabilities (BTC-ETH), Huge Potential [Full Writeup]

Preface
Full disclosure here; I am heavily invested in this. I have picked up some real gems from here and was only in the position to buy so much of this because of you guys so I thought it was time to give back. I only invest in Utility Coins. These are coins that actually DO something, and provide new/build upon the crypto infrastructure to work towards the end goal that Bitcoin itself set out to achieve(financial independence from the fiat banking system). This way, I avoid 99% of the scams in crypto that are functionless vapourware, and if you only invest in things that have strong fundamentals in the long term you are much more likely to make money.
Introduction
Stakenet is a Lightning Network-ready open-source platform for decentralized applications with its native cryptocurrency – XSN. It is powered by a Proof of Stake blockchain with trustless cold staking and Masternodes. Its use case is to provide a highly secure cross-chain infrastructure for these decentralized applications, where individuals can easily operate with any blockchain simply by using Stakenet and its native currency XSN.
Ok... but what does it actually do and solve?
The moonshot here is the DEX (Decentralised Exchange) that they are building. This is a lightning-network DEX with interchain capabilities. That means you could trade BTC directly for ETH; securely, instantly, cheaply and privately.
Right now, most crypto is traded to and from Centralised Exchanges like Binance. To buy and sell on these exchanges, you have to send your crypto wallets on that exchange. That means the exchanges have your private keys, and they have control over your funds. When you use a centralised exchange, you are no longer in control of your assets, and depend on the trustworthiness of middlemen. We have in the past of course seen infamous exit scams by centralised exchanges like Mt. Gox.
The alternative? Decentralised Exchanges. DEX's have no central authority and most importantly, your private keys(your crypto) never leavesYOUR possession and are never in anyone else's possession. So you can trade peer-to-peer without any of the drawbacks of Centralised Exchanges.
The problem is that this technology has not been perfected yet, and the DEX's that we have available to us now are not providing cheap, private, quick trading on a decentralised medium because of their technological inadequacies. Take Uniswap for example. This DEX accounts for over 60% of all DEX volume and facilitates trading of ERC-20 tokens, over the Ethereum blockchain. The problem? Because of the huge amount of transaction that are occurring over the Ethereum network, this has lead to congestion(too many transaction for the network to handle at one time) so the fees have increased dramatically. Another big problem? It's only for Ethereum. You cant for example, Buy LINK with BTC. You must use ETH.
The solution? Layer 2 protocols. These are layers built ON TOP of existing blockchains, that are designed to solve the transaction and scaling difficulties that crypto as a whole is facing today(and ultimately stopping mass adoption) The developers at Stakenet have seen the big picture, and have decided to implement the lightning network(a layer 2 protocol) into its DEX from the ground up. This will facilitate the functionalities of a DEX without any of the drawbacks of the CEX's and the DEX's we have today.
Heres someone much more qualified than me, Andreas Antonopoulos, to explain this
https://streamable.com/kzpimj
'Once we have efficient, well designed DEX's on layer 2, there wont even be any DEX's on layer 1'
Progress
The Stakenet team were the first to envision this grand solution and have been working on it since its conception in June 2019. They have been making steady progress ever since and right now, the DEX is in an open beta stage where rigorous testing is constant by themselves and the public. For a project of this scale, stress testing is paramount. If the product were to launch with any bugs/errors that would result in the loss of a users funds, this would obviously be very damaging to Stakenet's reputation. So I believe that the developers conservative approach is wise.
As of now the only pairs tradeable on the DEX are XSN/BTC and LTC/BTC. The DEX has only just launched as a public beta and is not in its full public release stage yet. As development moves forward more lightning network and atomic swap compatible coins will be added to the DEX, and of course, the team are hard at work on Raiden Integration - this will allow ETH and tokens on the Ethereum blockchain to be traded on the DEX between separate blockchains(instantly, cheaply, privately) This is where Stakenet enters top 50 territory on CMC if successful and is the true value here. Raiden Integration is well underway is being tested in a closed public group on Linux.
The full public DEX with Raiden Integration is expected to release by the end of the year. Given the state of development so far and the rate of progress, this seems realistic.
Tokenomics
2.6 Metrics overview (from whitepaper)
XSN is slightly inflationary, much like ETH as this is necessary for the economy to be adopted and work in the long term. There is however a deflationary mechanism in place - all trading fees on the DEX get converted to XSN and 10% of these fees are burned. This puts constant buying pressure on XSN and acts as a deflationary mechanism. XSN has inherent value because it makes up the infrastructure that the DEX will run off and as such Masternode operators and Stakers will see the fee's from the DEX.
Conclusion
We can clearly see that a layer 2 DEX is the future of crypto currency trading. It will facilitate secure, cheap, instant and private trading across all coins with lightning capabilities, thus solving the scaling and transaction issues that are holding back crypto today. I dont need to tell you the implications of this, and what it means for crypto as a whole. If Stakenet can launch a layer 2 DEX with Raiden Integration, It will become the primary DEX in terms of volume.
Stakenet DEX will most likely be the first layer 2 DEX(first mover advantage) and its blockchain is the infrastructure that will host this DEX and subsequently receive it's trading fee's. It is not difficult to envision a time in the next year when Stakenet DEX is functional and hosting hundreds of millions of dollars worth of trading every single day.
At $30 million market cap, I cant see any other potential investment right now with this much potential upside.
This post has merely served as in introduction and a heads up for this project, there is MUCH more to cover like vortex liquidity, masternodes, TOR integration... for now, here is some additional reading. Resources
TLDR; No. Do you want to make money? I'd start with learning how to read.
submitted by hotprocession to CryptoMoonShots [link] [comments]

Understand the Blockchain in Two Minutes - YouTube BITCOIN AND BLOCKCHAIN EASILY Explained - YouTube How to buy bitcoin in Blockchain EASY EXPLAINED - YouTube Bitcoin explained and made simple  Guardian Animations ... What is Bitcoin? Bitcoin Explained Simply for Dummies ...

Blockchain is the technology underpinning Bitcoin, and it was specifically developed for Bitcoin cryptocurrency, and Bitcoin was the first example of blockchain. Today, blockchain technology is revolutionizing almost every sector. From maintaining a shared, transparent system of record to auditing the supply chain, and providing proof of insurance, there are numerous applications of blockchain ... Getting Bitcoin blockchain explained is essential to understanding how blockchain works. The Bitcoin blockchain is a database (known as a “ledger”) that consists only of Bitcoin transaction records.There is no central location that holds the database, instead, it is shared across a huge network of computers. Hence the title: blockchain explained the easy way. ... Satoshi Nakamoto, the unknown entity behind Bitcoin – the most popular cryptocurrency to date, was unhappy that we need to trust a third party to perform transactions online. Look at your credit card spends. You get your credit card from a bank. And the merchant has to set up a payment processing system on his online store, which is, in ... Proof-of-work is used in Bitcoin to decide who gets to add a new block of transactions to the blockchain. A traditional online payment system would have a trusted third party order transactions on the network, but the point of Bitcoin is to act in an apolitical, permissionless manner. When proof-of-work is used instead of a trusted third party, transactions can be ordered by a dynamic ... Bitcoin was invented in 2009 by a person (or group) who called himself Satoshi Nakamoto. His ... Read: Blockchain explained -- it builds trust when you need it most. Giphy Using specialized ...

[index] [14446] [34235] [26820] [48033] [8720] [10278] [35743] [14797] [50205] [33640]

Understand the Blockchain in Two Minutes - YouTube

Bitcoin & Blockchain Explained, Simplified, Easy To Understand. Visit my website, watch more videos to learn about Bitcoin and Crypto currency. A free introduction and guide built during free time ... Don't fret about Blockchain if you aren't a nerd. Its really simple to understand and follow. This video talks about the basics of Bitcoin mining technology ... Look at my method on how I made 50$ day with crypto! https://bit.ly/2PbcYbV Sign up with Coinbase here: https://bit.ly/2LQ12KU Take a look at this super Bloc... What is The History of Bitcoin: Super Easy Explanation - https://blockgeeks.com/ We’ll start at the very beginning by understanding the history of blockchain... What is a blockchain and how do they work? I'll explain why blockchains are so special in simple and plain English! 💰 Want to buy Bitcoin or Ethereum? Buy fo...

#